About 2.43 kg of pepper
Divide 17 by 7
Answer:
Multiply 7/6 by 3/3
Step-by-step explanation:
Multiplying 7/6 by 3/3 will give you a result of 21/18.
Hope this helps!
I believe that the expression would be t+(4+s)
Answer:

Step by step explanation:
![\text{Given that, two roots are}~ -4~ \text{and}~ 4i.\\\\\text{Let,}\\\\~~~~~~~x = 4i\\\\\implies x^2 = 16i^2~~~~~~~;[\text{Square on both sides}]\\\\\implies x^2 = -16~~~~~~~~;[i^2 = -1]\\\\\implies x^2 +16 = 0\\\\\text{So,}~ x^2 +16~ \text{ is a factor of the 3 degree polynomial}.\\ \\ \text{The polynomial is ,}\\\\ f(x) = (x+4)(x^2 +16)\\\\~~~~~~~=x^3 +16x +4x^2 +64\\\\~~~~~~~=x^3 +4x^2 +16x +64](https://tex.z-dn.net/?f=%5Ctext%7BGiven%20that%2C%20%20two%20roots%20are%7D~%20-4~%20%5Ctext%7Band%7D~%20%204i.%5C%5C%5C%5C%5Ctext%7BLet%2C%7D%5C%5C%5C%5C~~~~~~~x%20%3D%204i%5C%5C%5C%5C%5Cimplies%20%20x%5E2%20%3D%2016i%5E2~~~~~~~%3B%5B%5Ctext%7BSquare%20on%20both%20sides%7D%5D%5C%5C%5C%5C%5Cimplies%20x%5E2%20%3D%20-16~~~~~~~~%3B%5Bi%5E2%20%3D%20-1%5D%5C%5C%5C%5C%5Cimplies%20x%5E2%20%2B16%20%3D%200%5C%5C%5C%5C%5Ctext%7BSo%2C%7D~%20x%5E2%20%2B16~%20%5Ctext%7B%20is%20a%20factor%20of%20the%203%20degree%20polynomial%7D.%5C%5C%20%5C%5C%20%5Ctext%7BThe%20polynomial%20is%20%2C%7D%5C%5C%5C%5C%20f%28x%29%20%3D%20%28x%2B4%29%28x%5E2%20%2B16%29%5C%5C%5C%5C~~~~~~~%3Dx%5E3%20%2B16x%20%2B4x%5E2%20%2B64%5C%5C%5C%5C~~~~~~~%3Dx%5E3%20%2B4x%5E2%20%2B16x%20%2B64)
Answer:

Step-by-step explanation:
I will work with radians.
![$\frac {\cos^2 \left(\frac{\pi}{2}-x \right)+\sin(-x)-\sin^2 \left(\frac{\pi}{2}-x \right)+\cos \left(\frac{\pi}{2}-x \right)} {[\sin(\pi -x)+\cos(-x)] \cdot [\sin(2\pi +x)\cos(2\pi-x)]}$](https://tex.z-dn.net/?f=%24%5Cfrac%20%7B%5Ccos%5E2%20%5Cleft%28%5Cfrac%7B%5Cpi%7D%7B2%7D-x%20%5Cright%29%2B%5Csin%28-x%29-%5Csin%5E2%20%5Cleft%28%5Cfrac%7B%5Cpi%7D%7B2%7D-x%20%5Cright%29%2B%5Ccos%20%5Cleft%28%5Cfrac%7B%5Cpi%7D%7B2%7D-x%20%5Cright%29%7D%20%7B%5B%5Csin%28%5Cpi%20-x%29%2B%5Ccos%28-x%29%5D%20%5Ccdot%20%5B%5Csin%282%5Cpi%20%2Bx%29%5Ccos%282%5Cpi-x%29%5D%7D%24)
First, I will deal with the numerator

Consider the following trigonometric identities:




Therefore, the numerator will be

Once



Now let's deal with the numerator
![[\sin(\pi -x)+\cos(-x)] \cdot [\sin(2\pi +x)\cos(2\pi-x)]](https://tex.z-dn.net/?f=%5B%5Csin%28%5Cpi%20-x%29%2B%5Ccos%28-x%29%5D%20%5Ccdot%20%5B%5Csin%282%5Cpi%20%2Bx%29%5Ccos%282%5Cpi-x%29%5D)
Using the sum and difference identities:





Therefore,
![[\sin(\pi -x)+\cos(-x)] \cdot [\sin(2\pi +x)\cos(2\pi-x)] \implies [\sin(x)+\cos(x)] \cdot [\sin(x)\cos(x)]](https://tex.z-dn.net/?f=%5B%5Csin%28%5Cpi%20-x%29%2B%5Ccos%28-x%29%5D%20%5Ccdot%20%5B%5Csin%282%5Cpi%20%2Bx%29%5Ccos%282%5Cpi-x%29%5D%20%5Cimplies%20%5B%5Csin%28x%29%2B%5Ccos%28x%29%5D%20%5Ccdot%20%5B%5Csin%28x%29%5Ccos%28x%29%5D)
![\implies [p+4] \cdot [p \cdot 4]=4p^2+16p](https://tex.z-dn.net/?f=%5Cimplies%20%5Bp%2B4%5D%20%5Ccdot%20%5Bp%20%5Ccdot%204%5D%3D4p%5E2%2B16p)
The final expression will be
