La longitud del arco (s) en una circunferencia, conociendo el radio (r) y el ángulo (θ) que forman los dos radios, es:
s = r∙θ
Con el ángulo en radianes
F V7 w7 :
If you find the discriminant it will tell you the number and types of roots. The discriminant is the value b^2 -4ac.
a = 1
b = 1
c = 1
1^2 - 4*1*1
1-4 = -3
Since this is a negative number there will be 2 complex roots.
<span>
</span>
You can use (a+b)2 = a2+2ab+b2.
(2x - 3)2 = (2x)2 + 2(2x)(-3) + (-3)2 = 4x2 - 12x + 9
Or you can use FOIL.
(2x - 3)2 = (2x - 3)(2x - 3) = (2x)2 + (2x)(-3) + (-3)(2x) + (-3)2 = 4x2 - 12x + 9
hope I could be helpful
Answer:
7/25
Step-by-step explanation:
θ lies in quadrant ii
so 2θ lies in quadrant iv
csc θ=5/3
sin θ=3/5 (sin θ=1/csc θ)
[cos(α+β)=cosαcosβ-sinαsinβ]
cos (2θ)=cos(θ+θ)=cos θ cos θ-sin θ sin θ=cos² θ-sin ²θ=1-sin²θ-sin²θ=1-2sin²θ
=1-2 (3/5)²
=1-2(9/25)
=1-18/25
=(25-18)/25
=7/25