Answer:
If one wraps the fingers around the wire and points the thumb in the direction of the "conventional" current the fingers will point towards the North pole - the direction of the B-field.
In this case the B-field is pointed "West".
0 N. It's being pushed up the same amount it's being pushed down, so it cancels out.
If you drop an object, it accelerates downward at 9.8 m/s2 (in the absence of air resistance). If instead, you throw it downward, its downward acceleration after release is 9.8 m/s2.
Acceleration is the rate at which an object's velocity with respect to time changes. They are vector quantities and accelerations. The direction of the net force acting on an object determines the direction of its acceleration. Uniform acceleration, non-uniform acceleration, and average acceleration are the three different forms of accelerated motions.
A free-falling object experiences a downward acceleration of 9.8 m/s/s (on Earth). This specific designation is given to the numerical value for an object in free fall because it is such an essential value. The longer an object is in free fall, the faster it descends toward the ground due to gravity. In actuality, an object's velocity rises by 9.8 m/s2, so it reaches 9.8 m/s by the time it begins to fall.
To know more about acceleration refer to: brainly.com/question/14468548
#SPJ4
Answer:
The girl exerts more pressure.
Explanation:
Pressure can be defined as the force exerted normally or perpendicularly per unit area.
i.e P = F/A
<u>Girls</u>
Area of the heel = 1cm² = 10^(-4) m²
Force = mg = 50 × 10 = 500N
Pressure =


<u>Elephant</u>
<u>Area</u><u> </u><u>=</u><u> </u><u>2</u><u>5</u><u>0</u><u>cm</u><u>²</u><u> </u><u>=</u><u> </u><u>2</u><u>.</u><u>5</u><u> </u><u>x</u><u> </u><u>1</u><u>0</u><u>^</u><u>(</u><u>-</u><u>2</u><u>)</u><u>b</u><u> </u><u>m</u><u>²</u>
<u>Force</u><u> </u><u>=</u><u> </u><u>mg</u><u> </u><u>=</u><u> </u><u>4</u><u>0</u><u>0</u><u>0</u><u>0</u><u>N</u>
<u>Pressure</u><u> </u><u>=</u><u> </u>
<u>
</u>
<u>
</u>