Aster's final position from her initial position is 63 m approximately. She will head north west direction to return to her initial position
<h3>
What is Displacement ?</h3>
Displacement is the distance travelled in a specific direction. It is a vector quantity.
Given that a person walks first 70 m in the direction 37° north of east, and then walks 82 m in the direction 20° south of east, and finally walks 28 m in the direction 30° west of north.
a) Let P be the Aster's final position from her initial position?
We can use bearing by using Cosine formula to solve this question.
P² = 70² + 82² - 2 × 70 × 82 cos 73
P² = 4900 + 6724 - 11480 cos 73
P² = 11624 - 3356.43
P² = 8267.57
P = √8267.57
P = 90.9 m
P = 90.9 - 28
P = 62.9 m
We can get the angle by using Sine rule
82/ sin Ф = 90.9 / sin 73
sin Ф = 0.8627
Ф =
(0.8627)
Ф = 59.6°
Ф = 60°
b) She will head north west direction to return to her initial position
Learn more about Displacement here: brainly.com/question/2109763
#SPJ1
Acceleration is the rate of change of velocity, and velocity is the change in displacement over the change in time so the answer would be A.
Answer: 580 x 10^-3 J
Explanation:
0.6mm is 0.6/1000 = 600*10^-6 m
The plate area is .17*.17 = 28.9*10^-3 m^2
Air:
The voltage that can be sustained by 0.60 mm of air dielectric is:
V = 3.0*10^6* 600*10^-6 = 1800 V
The capacitance is:
C = ε*A/d = 8.854*10^-12 * 28.9*10^-3/600*10^-6 = 426*10^-12 F = 426 pF
The energy stored in a capacitor is:
E = (1/2)*C*V^2 = (1/2)*426*10^-12*(1800)^2 = 691*10^-6 J
Teflon:
The voltage is:
V = 60*10^6* 600*10^-6 = 36*10^3 = 36 kV
According to the listed reference, the relative dielectric constant for teflon is 2.1, this figure multiplies the "ε" of free space.
The capacitance is:
C = ε*A/d = 2.1*8.854*10^-12 * 28.9*10^-3/600*10^-6 = 896*10^-12 F = 896 pF
It would have been easier to note that the capacitance is 2.1 times the air-dielectric case.
The maximum energy stored is:
E = (1/2)*C*V^2 = (1/2)* 896*10^-12* (36*10^3)^2 = 580*10^-3 J