Answer:

Explanation:
It is given that,
Diameter of cylinder, d = 6.6 cm
Radius of cylinder, r = 3.3 cm = 0.033 m
Acceleration of the string, 
Displacement, d = 1.3 m
The angular acceleration is given by :



The angular displacement is given by :



Using the third equation of rotational kinematics as :

Here, 



Since, 1 rad/s = 9.54 rpm
So,

So, the angular speed of the cylinder is 571.42 rpm. Hence, this is the required solution.
Answer:
<em>The momentum of the car is 35,000 kg.m/s</em>
Explanation:
<u>Momentum</u>
Momentum is often defined as <em>mass in motion.</em>
Since all objects have mass, if it's moving, then it has momentum. It can be calculated as the product of the mass by the velocity of the object:

If only magnitudes are considered:
p = mv
The car has a mass of m=1,000 kg and travels at v=35 m/s. Calculating its momentum:
p = 1,000 kg * 35 m/s
p = 35,000 kg.m/s
The momentum of the car is 35,000 kg.m/s
Answer: C
Explanation:
Bro this is common sense. Throw something across the room and watch it. It isnt going to be repulsed and fly up. It also isnt going to continue on forever. It will clearly fall and hit the ground
A bridge supported by vertical cables which then leads to more support from larger cables.
Answer:D
Explanation:
It was right o khan academy