The answer to the problem is as follows:
x = sin(t/2)
<span>y = cos(t/2) </span>
<span>Square both equations and add to eliminate the parameter t: </span>
<span>x^2 + y^2 = sin^2(t/2) + cos^2(t/2) = 1 </span>
<span>The final step is translating the original parameter limits into limits on x and y. Over the -Pi to +Pi range of t, x varies from -1 to +1, whereas y varies from 0 to 1. Thus we have the semicircle in quadrants I and II: y >= 0.</span>
Answer:
95
Step-by-step explanation:
you can watch answer in photo. by the way where r u from?
Don't quote me but i'm pretty sure it is a right triangle
Answer: y <= 2x+3 or 2x+3 >= y
Step-by-step explanation: Assuming each interval is one unit
2x - 27=56
the answer to the question