no not until u know the price of a cd u cant determine the total price
Arcsin x + arcsin 2x = π/3
arcsin 2x = π/3 - arcsin x
sin[arcsin 2x] = sin[π/3 - arcsin x] (remember the left side is like sin(a-b)
2x = sinπ/3 cos(arcsin x)-cosπ/3 sin(arc sinx)
2x = √3/2 . cos(arcsin x) - (1/2)x)
but cos(arcsin x) = √(1-x²)===>2x = √3/2 .√(1-x²) - (1/2)x)
Reduce to same denominator:
(4x) = √3 .√(1-x²) - (x)===>5x = √3 .√(1-x²)
Square both sides==> 25x²=3(1-x²)
28 x² = 3 & x² = 3/28 & x =√(3/28)
9514 1404 393
Answer:
see attached
Step-by-step explanation:
The graph of g(x) is a vertically scaled version of the graph of f(x). The scale factor is 1/2, so vertical height at a given value of x is 1/2 what it is for f(x). This will make the graph appear shorter and fatter than for f(x).
The graph of g(x) is attached.
Answer:
16. Angle C is approximately 13.0 degrees.
17. The length of segment BC is approximately 45.0.
18. Angle B is approximately 26.0 degrees.
15. The length of segment DF "e" is approximately 12.9.
Step-by-step explanation:
<h3>16</h3>
By the law of sine, the sine of interior angles of a triangle are proportional to the length of the side opposite to that angle.
For triangle ABC:
,- The opposite side of angle A
, - The angle C is to be found, and
- The length of the side opposite to angle C
.
.
.
.
Note that the inverse sine function here
is also known as arcsin.
<h3>17</h3>
By the law of cosine,
,
where
,
, and
are the lengths of sides of triangle ABC, and
is the cosine of angle C.
For triangle ABC:
,
, - The length of
(segment BC) is to be found, and - The cosine of angle A is
.
Therefore, replace C in the equation with A, and the law of cosine will become:
.
.
<h3>18</h3>
For triangle ABC:
,
,
, and- Angle B is to be found.
Start by finding the cosine of angle B. Apply the law of cosine.
.
.
.
<h3>15</h3>
For triangle DEF:
- The length of segment DF is to be found,
- The length of segment EF is 9,
- The sine of angle E is
, and - The sine of angle D is
.
Apply the law of sine:

.