Explanation:
Cr=35.880/51=0.73≈0.7
P=21.076/31=0.67≈0.7
O=43.543/16=2.71
Divide each by 0.7 u get
Cr=1 ,P =1, O=4
Empirical formula is CrPO4
The answer is B for number 1 because rather than it being an observation it is something that you know for sure happened without guessing.
the answer is B the researcher is actually adding the fertilizer and measuring it.
Answer:
Sodium reacts with the oxygen in air. It reacts vigorously with oxygen and the moisture that is already present in the air and thus catches fire.
Answer:
The mass percent of aluminum sulfate in the sample is 16.18%.
Explanation:
Mass of the sample = 1.45 g

Mass of the precipitate = 0.107 g
Moles of aluminum hydroxide = 
According to reaction, 2 moles of aluminum hydroxide is obtained from 1 mole of aluminum sulfate .
Then 0.001372 moles of aluminum hydroxide will be obtained from:

Mass of 0.000686 moles of aluminum sulfate :
= 0.000686 mol × 342 g/mol = 0.2346 g
The mass percent of aluminum sulfate in the sample:

7.5 M is the concentration of 60 ml of H3PO4 if it is neutralized by 225 ml of 2 M Ba(OH)2.
Explanation:
Data given:
volume of phosphoric acid, Vacid =60 ml
volume of barium hydroxide, Vbase = 225 ml
molarity of barium hydroxide, Mbase = 2M
Molarity of phosphoric acid, Macid =?
the formula for titration is used as:
Macid x Vacid = Mbase x Vbase
rearranging the equation to get Macid
Macid = 
Macid =
Macid = 7.5 M
the concentration of the phosphoric acid is 7.5 M and the volume is 60 ml. Thus 7.5 M solution of phosphoric acid is used to neutralize the barium hydroxide solution of 2M.