Answer:
the ones are options 2 and 3
Step-by-step explanation:Step 1: Simplify both sides of the equation.
4−(2y−1)=2(5y+9)+y
4+−1(2y−1)=2(5y+9)+y(Distribute the Negative Sign)
4+−1(2y)+(−1)(−1)=2(5y+9)+y
4+−2y+1=2(5y+9)+y
4+−2y+1=(2)(5y)+(2)(9)+y(Distribute)
4+−2y+1=10y+18+y
(−2y)+(4+1)=(10y+y)+(18)(Combine Like Terms)
−2y+5=11y+18
−2y+5=11y+18
Step 2: Subtract 11y from both sides.
−2y+5−11y=11y+18−11y
−13y+5=18
Step 3: Subtract 5 from both sides.
−13y+5−5=18−5
−13y=13
Step 4: Divide both sides by -13.
−13y
−13
=
13
−13
y=−1
Answer: y =-1
21v + 8 - 12v - 7 + 3t - 1t = (combine like terms)
9v + 2t + 1 <==
9514 1404 393
Answer:
- 4
- -2
- 4
- 2
- -2±√2
Step-by-step explanation:
In order to fill the first blank, we need to look at the second line to see what the coefficient of x is.
1. x² +<u> </u><u>4 </u>x +2 = 0
The constant is subtracted from both sides to get the second line.
2. x² +4x = <u> -2 </u>
The value that is added on the third line is the square of half the x-coefficient: (4/2)² = 4
3. x² +4x +<u> 4 </u> = -2 +4
On the fourth line, the left side is written as a square, and the right side is simplified. The square root is taken of both sides.
4. √(x +2)² = ±√<u> 2 </u>
Finally, 2 is subtracted from both sides to find the values of x.
5. x = <u> -2 ±√2 </u>