Answer:
The vertical distance is ![d = \frac{2}{k} *[mg + f]](https://tex.z-dn.net/?f=d%20%3D%20%5Cfrac%7B2%7D%7Bk%7D%20%2A%5Bmg%20%2B%20f%5D)
Explanation:
From the question we are told that
The mass of the cylinder is m
The kinetic frictional force is f
Generally from the work energy theorem

Here E the the energy of the spring which is increasing and this is mathematically represented as

Here k is the spring constant
P is the potential energy of the cylinder which is mathematically represented as

And
is the workdone by friction which is mathematically represented as

So

=> ![\frac{1}{2} * k * d^2 = d[mg + f ]](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B2%7D%20%2A%20k%20%20%2A%20%20d%5E2%20%3D%20%20d%5Bmg%20%2B%20%20f%20%20%20%20%5D)
=> ![\frac{1}{2} * k * d = [mg + f ]](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B2%7D%20%2A%20k%20%20%2A%20%20d%20%3D%20%20%5Bmg%20%2B%20%20f%20%20%20%20%5D)
=> ![d = \frac{2}{k} *[mg + f]](https://tex.z-dn.net/?f=d%20%3D%20%5Cfrac%7B2%7D%7Bk%7D%20%2A%5Bmg%20%2B%20f%5D)
It means, <span>Acceleration increases as mass decreases.
So, option C is your answer.
Hope this helps!
</span>
When a river flows into an ocean, it slows down and deposits materials in its delta
Answer:
A) v_average = - 10 km / h, B) v = 1.6 m / s, v = 17.6 m / s
Explanation:
A) the average speed is the average speed of a body, if we assume that the direction of going up the hill is positive
v₁ = 40 km / h
v₂ = - 60 km / h
the average speed is
v_average =
v_average = ( 40 - 60)/2
v_average = - 10 km / h
B) in this case they indicate the acceleration a = 3.2 m / s² and the velocity vo = 9.6 m / s
i) the speed for 2.5 s above
v = v₀ + a t
as the time is earlier
t = - 2.5 s
we substitute
v = 9.6 - 3.2 2.5
v = 1.6 m / s
ii) the velocity for a subsequent time of 2.5 s
t = 2.5 s
we substitute
v = 9.6 + 3.2 2.5
v = 17.6 m / s