Answer:
The value of g = 0.6168 m/s².
Explanation:
Given that,
On a planet X,
Length of the pendulum(L) = 0.25 meters,
Time period of the pendulum(T) = 4 seconds.
We have to find the 'g' value on the planet.
The 'g' value on a planet can be found by a pendulum with help of the formula,
T = 2π ×
From this, g = 4π² × 
Using the above formula and substituting the values,we get,
g = 0.6168 m/s².
The closer together they are the harder it is to hold on to because the magnetic field is stronger as it gets closer.
Answer:
D. The electromagnet's magnetic field is stronger close to it than far from it.
Answer:
A) 11.28 x 10^(7) A.m²
B) 2.258 x 10^(17)A
Explanation:
A) The current density is given by the formula ;
J = nqv
Where n is the density of protons in the solar wind which is 12.5 cm³ or 12.5 x 10^(-6) m³
q is the proton charge which is 1.6 x 10^(-19) C
v is velocity which is 564km or 564000m
Thus, J = 12.5 x 10^(-6) x 1.6 x 10^(-19) x 564000 = 11.28 x 10^(7) A.m²
B) the formula for the total current the earth received is given as;
I = JA
The effective area is the cross section of the earth and thus,
Area = πr² where r is the radius of the earth given as: 6.371 x 10^(6)
A = π(6.371 x 10^(6)) ²
So I = 11.28 x 10^(7) x π(6.371 x 10^(6))² = 2.258 x 10^(17)A