Answer:
Metal
Explanation:
In chemistry, an alkali is a basic, ionic salt of an alkali metal or alkaline earth metal chemical element. An alkali also can be defined as a base that dissolves in water. A solution of a soluble base has a pH greater than 7.0.
Answer:
Lowering the temperature typically reduces the significance of the decrease in entropy. That makes the Gibbs Free energy of the reaction more negative. As a result, the reaction becomes more favorable overall.
Explanation:
In an addition reaction there's a decrease in the number of particles. Consider the hydrogenation of ethene as an example.
.
When
is added to
(ethene) under heat and with the presence of a catalyst,
(ethane) would be produced.
Note that on the left-hand side of the equation, there are two gaseous molecules. However, on the right-hand side there's only one gaseous molecule. That's a significant decrease in entropy. In other words,
.
The equation for the change in Gibbs Free Energy for a particular reaction is:
.
For a particular reaction, the more negative
is, the more spontaneous ("favorable") the reaction would be.
Since typically
for addition reactions, the "entropy term" of it would be positive. That's not very helpful if the reaction needs to be favorable.
(absolute temperature) is always nonnegative. However, lowering the temperature could help bring the value of
Answer:
pH = 13.1
Explanation:
Hello there!
In this case, according to the given information, we can set up the following equation:

Thus, since there is 1:1 mole ratio of HCl to KOH, we can find the reacting moles as follows:

Thus, since there are less moles of HCl, we calculate the remaining moles of KOH as follows:

And the resulting concentration of KOH and OH ions as this is a strong base:
![[KOH]=[OH^-]=\frac{0.00576mol}{0.012L+0.032L}=0.131M](https://tex.z-dn.net/?f=%5BKOH%5D%3D%5BOH%5E-%5D%3D%5Cfrac%7B0.00576mol%7D%7B0.012L%2B0.032L%7D%3D0.131M)
And the resulting pH is:

Regards!
Answer: im thinking its gonna be d.C2H6 and also
the explanation is on the research i had did before i had answered this question so i really hope this help :)
Explanation:
Ar = van de waals forces or london forces
C
H
4
= van de waals forces or london forces
HCl=permanent dipole-dipole interactions
CO = permanent dipole-dipole interactions
HF = hydrogen bonding
N
a
N
O
3
= permanent dipole-dipole interactions
C
a
C
l
2
= van de waals forces or london forces