Answer:
a) Suzie’s average acceleration = -6.46 m/s²
b) Force exerted to stop Suzie = 271.52 N
Explanation:
a) We have equation of motion, v = u + at
Final velocity, v = 0 m/s
Initial velocity, u = 32 mph = 14.22 m/s
Time, t =2.2 s
Substituting
0 = 14.22 + a x 2.2
a = -6.46 m/s²
Suzie’s average acceleration = -6.46 m/s²
b) Mass of Suzie = 42 kg
Force = Mass x Acceleration
F = Ma
F = 42 x -6.46 =-271.52 N
Force exerted to stop Suzie = 271.52 N
Answer:
Time - taken = 2.5 s
deceleration= -8 m/s²
Solution:
Given:
speed, v = 8 m/s
distance, d = 20m
To Find:
deacceleration = ?
As we know speed is defined as
v = d/t
plugging in the values
t = 20/ 8
t = 2.5s
Now from deceleration formula
a = - v/ t
a = - 20/ 2.5
a = - 8 m/s²
Thus, the time taken and acceleration is 2.5 s and -8 m/s²
respectively.
Learn more about deceleration here:
brainly.com/question/13354629
#SPJ4
It will spread faster in the hot water! It would spread slower in cold water
Answer:
Oscillation whose amplitude reduce with time are called damped oscillation. This happen because of the friction. In oscillation if its amplitude doesn't change with time then they are called Undamped oscillation
Answer:
C. The voltage drop across the resistor is 2.1V and nothing about the current through the resistor.
Explanation:
When connected in parallel, voltage across the resistances are the same. So if 2.1V was dropped across the LED then 2.1V was also dropped across the resistor. However, this tells us nothing about the current through the resistor. We can find the current across the resistor if we know the resistance of the resistor, but that's about it.
If it were a series connection, then the current would have been the same, but the voltage drop were another story.