Answer:
K = m g (A - A2)
Explanation:
In a block spring system the total energy is the sum of the potential energy plus the kinetic energy, for maximum elongation all the energy is potential
Em = U₀ = m g A
For when the system is at an ele
Elongation A2 less than A, energy has two parts
Em = K + U₂
K = Em –U₂
We substitute
K = m g A - m gA2
K = m g (A - A2)
Incomplete question as the mass of baseball is missing.I have assume 0.2kg mass of baseball.So complete question is:
A baseball has mass 0.2 kg.If the velocity of a pitched ball has a magnitude of 44.5 m/sm/s and the batted ball's velocity is 55.5 m/sm/s in the opposite direction, find the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat.
Answer:
ΔP=20 kg.m/s
Explanation:
Given data
Mass m=0.2 kg
Initial speed Vi=-44.5m/s
Final speed Vf=55.5 m/s
Required
Change in momentum ΔP
Solution
First we take the batted balls velocity as the final velocity and its direction is the positive direction and we take the pitched balls velocity as the initial velocity and so its direction will be negative direction.So we have:

Now we need to find the initial momentum
So

Substitute the given values

Now for final momentum

So the change in momentum is given as:
ΔP=P₂-P₁
![=[(11.1kg.m/s)-(-8.9kg.m/s)]\\=20kg.m/s](https://tex.z-dn.net/?f=%3D%5B%2811.1kg.m%2Fs%29-%28-8.9kg.m%2Fs%29%5D%5C%5C%3D20kg.m%2Fs)
ΔP=20 kg.m/s
<h3>♫ - - - - - - - - - - - - - - - ~Hello There!~ - - - - - - - - - - - - - - - ♫</h3>
➷ After 10,000 years the mass will be:
1,000 / 2 = 500
After 20,000 years the mass will be:
500/2 = 250
As you can see, the correct answer would be A. 20,000 years
<h3><u>✽</u></h3>
➶ Hope This Helps You!
➶ Good Luck (:
➶ Have A Great Day ^-^
↬ ʜᴀɴɴᴀʜ ♡
Answer:
pressure in cylinder A must be one third of pressure in cylinder B
Explanation:
We are told that the temperature and quantity of the gases in the 2 cylinders are same.
Thus, number of moles and temperature will be the same for both cylinders.
To this effect we will use the formula for ideal gas equation which is;
PV = nRT
Where;
P is prrssure
V is volume
n is number of moles
T is temperature
R is gas constant
We are told that Cylinder A has three times the volume of cylinder .
Thus;
V_a = 3V_b
For cylinder A;
Pressure = P_a
Volume = 3V_b
Number of moles = n
Thus;
P_a × 3V_b = nRT
For cylinder B;
Pressure = P_b
Volume = V_b
Number of moles = n
Thus,
P_b × V_b = nRT
Combining the equations for both cylinders, we have;
P_a × 3V_b = P_b × V_b
V_b will cancel out to give;
3P_a = P_b
Divide both sides by 3 to get;
P_a = ⅓P_b
Thus, pressure in cylinder A must be one third of pressure in cylinder B