Answer:
Figure A
Explanation:
At first, the inflated balloon is rubbed against the hair.
In this situation, the balloon is charged by friction: because of the friction between the surface of the balllon and the hair, electrons are transferred from the hair to the surface of the balloon.
As a result, when the balloon is detached from the hair, it will have an excess of negative charge (due to the acquired electrons).
Then, the balloon is placed in contact with the non-conducting wall.
The non-conducting wall is initially neutral (equal number of positive and negative charges).
Because the wall is made of a non-conducting material (=isolant), the charges cannot move easily through it. Therefore, even though the charges on the wall feel a force due to the presence of the electrons in the balloon, they will not redistribute along the wall.
Therefore, the charges on the wall will remain equally distributed, as shown in figure A.
Answer:
Explanation:
Given that,
Mass m = 6.64×10^-27kg
Charge q = 3.2×10^-19C
Potential difference V =2.45×10^6V
Magnetic field B =1.6T
The force in a magnetic field is given as Force = q•(V×B)
Since V and B are perpendicular i.e 90°
Force =q•V•BSin90
F=q•V•B
So we need to find the velocity
Then, K•E is equal to work done by charge I.e K•E=U
K•E =½mV²
K•E =½ ×6.64×10^-27 V²
K•E = 3.32×10^-27 V²
U = q•V
U = 3.2×10^-19 × 2.45×10^6
U =7.84×10^-13
Then, K•E = U
3.32×10^-27V² = 7.84×10^-13
V² = 7.84×10^-13 / 3.32×10^-27
V² = 2.36×10^14
V=√2.36×10^14
V = 1.537×10^7 m/s
So, applying this to force in magnetic field
F=q•V•B
F= 3.2×10^-19 × 1.537×10^7 ×1.6
F = 7.87×10^-12 N
Answer:
The x-component and y-component of the velocity of the cruise ship relative to the patrol boat is -5.29 m/s and 0.18 m/s.
Explanation:
Given that,
Velocity of ship = 2.00 m/s due south
Velocity of boat = 5.60 m/s due north
Angle = 19.0°
We need to calculate the component
The velocity of the ship in term x and y coordinate


The velocity of the boat in term x and y coordinate
For x component,

Put the value into the formula


For y component,

Put the value into the formula


We need to calculate the x-component and y-component of the velocity of the cruise ship relative to the patrol boat
For x component,

Put the value into the formula


For y component,

Put the value into the formula


Hence, The x-component and y-component of the velocity of the cruise ship relative to the patrol boat is -5.29 m/s and 0.18 m/s.
Answer:

Explanation:
- We have to make a hollow sphere of inner radius
and outer radius
.
Then the mass of the material required to make such a sphere would be calculated as:
Total volume of the spherical shell:

And the volume of the hollow space in the sphere:

Therefore the net volume of material required to make the sphere:


- Now let the density of the of the material be
.
<u>Then the mass of the material used is:</u>

