Here are the ones that I know about
and can think of just now:
-- wind
-- solar
-- nuclear
-- tidal
-- hydro
-- geothermal
-- biomass
Newton's third law: If an object A exerts a force on object B, then object B must exert a force of equal magnitude and opposite direction back on object A. This law represents a certain symmetry in nature: forces always occur in pairs, and one body cannot exert a force on another without experiencing a force itself.
(a) The period of the oscillation is 0.8 s.
(b) The frequency of the oscillation is 1.25 Hz.
(c) The angular frequency of the oscillation is 7.885 rad/s.
(d) The amplitude of the oscillation is 3 cm.
(e) The force constant of the spring is 148.1 N/m.
The given parameters:
- <em>Mass of the ball, m = 2.4 kg</em>
<em />
From the given graph, we can determine the missing parameters.
The amplitude of the wave is the maximum displacement, A = 3 cm
The period of the oscillation is the time taken to make one complete cycle.
T = 0.8 s
The frequency of the oscillation is calculated as follows;

The angular frequency of the oscillation is calculated as follows;

The force constant of the spring is calculated as follows;

Learn more about general wave equation here: brainly.com/question/25699025
Answer:
v = 36.667 m/s
Explanation:
Knowing the rotational inertia as
Lₙ = 550 kg * m²
r = 1.0 m
m = 30.0 kg
To determine the minimum speed v must have when she grabs the bottom
Lₙ = I * ω
I = ¹/₂ * m * r²
I = ¹/₂ * 30.0 kg * 1.0² m
I = 15 kg * m²
Lₙ = I * ω ⇒ ω = Lₙ / I
ω = [ 550 kg * m² /s ] / ( 15 kg * m² )
ω = 36.667 rad /s
v = ω * r
v = 36.667 m/s