Answer:
Therefore it will take 7.66 hours for 80% of the lead decay.
Explanation:
The differential equation for decay is


Integrating both sides
ln A= kt+c₁

[
]
The initial condition is A(0)= A₀,


.........(1)
Given that the
has half life of 3.3 hours.
For half life
putting this in equation (1)

[taking ln both sides,
]

⇒k= - 0.21
Now A₀= 1 gram, 80%=0.8
and A= (1-0.8)A₀ = (0.2×1) gram = 0.2 gram
Now putting the value of k,A and A₀in the equation (1)




⇒ t≈7.66
Therefore it will take 7.66 hours for 80% of the lead decay.
Answer:
332.918g O2
Explanation:
I'm having some issues with the work however, your final answer should be 332.918g O2
Hope this helped!
It became thicker and its viscosity decreased and cannot flow as easily as before.
You ignite a chemical reaction by adding the borax solution to the glue mixture.
In a chemical reaction, the molecules of glue and borax combine to form a flexible, springy new substance. With rubber's vulcanization serving as a model, chemical cross-linking has been extensively employed to change the physical properties of polymeric materials.
Chemical links between polymer chains provide a substance with a more solid structure and perhaps a better-defined shape. It thickened and lost viscosity, making it more difficult to flow than it once could.
Learn more about the chemical reaction here brainly.com/question/16714866
#SPJ4.
Solution :
Comparing the solubility of silver chromate for the solutions :
----- Less soluble than in pure water.
----- Less soluble than in pure water.
----- Similar solubility as in the pure water
----- Similar solubility as in the pure water
The silver chromate dissociates to form :

When 0.1 M of
is added, the equilibrium shifts towards the reverse direction due to the common ion effect of
, so the solubility of
decreases.
Both
and
are neutral mediums, so they do not affect the solubility.