To determine this, lets use the atomic mass for each element to determine the corresponding number of moles for a given mass of 1 g.
Mo: 95.94 g/mol
1 g/95.94 g/mol = 0.01042 moles Mo
Se: 78.96 g/mol
1 g/78.96 g/mol = 0.01266 moles Se
Na: 22.99 g/mol
1 g/22.99 g/mol = 0.0435 moles Na
Br: 79.9 g/mol
1 g/79.9 g/mol = 0.0125 moles Br
<em>Thus, the answer is Na.</em>
Answer:- molar mass of the unknown gas is 71.5 gram per mol.
Solution:- From Graham's law of effusion rates, the rate of effusion of a gas is inversely proportional to the square root of it's molar mass.
When we compare the effusion rates of two gases then the formula for Graham's law is:

In this formula, V stands for volume and M stands for molar mass
Rate is volume effused per unit time. Since, the volumes are same, the formula could be written as:

let's say in formula, subscript 1 is for hydrogen gas and 2 is for the unknown gas.
Molar mass of hydrogen is 2.02 grams per mol and the time taken to effuse it is 2.42 min. The time taken to effuse the unknown gas is 14.4 min and we are asked to calculate it's molar mass. let's plug in the values in the formula:


doing squares to both sides:



So, the molar mass of the unknown gas is 71.5 grams per mol.
Sorry, I don’t believe in Jesus or god etc but thnx???
Answer:
The Artic Ocean
Explanation:
it is mostly surrounded by land with only a bit of exchange of water with the other oceans
Specific heat capacity is the amount of energy required to raise one gram of substances by 1 degree celsius . Therefore specific heat capacity for tatanium is 89.7j /( 33.0g x5.2 degree celsius) = 0.52j/g degree celcius
Molar mass for tatanium is 47.9 g/mole
heat is therefore 47.9 g/mole x 0.52j/g =24.9j/mole