Answer:
a. is converted to NAD+ by an enzyme called dehydrogenase
Explanation:
The electron transport chain of cellular respiration is the final step that oxidized NADH and FADH2. These reducing powers are formed during glycolysis and Kreb's cycle. Complex I of the electron transport chain present in the inner mitochondria membrane is NADH dehydrogenase. This protein complex accepts electrons from NADH and oxidizes it into NAD+. NADH dehydrogenase couples oxidation of NADH with the pumping of proton towards the intermembrane space.
The Cỉculatory system is an organ system that permits blood to everywhere in the body and transport nutrients, oxygen, carbon dioxide, ...to help fighting diseases ,.... The main parts of the Circulatory system are heart , lungs , veins , vessels, arteries,...
Eukaryotic cells use three major processes to transform the energy held in the chemical bonds of food molecules into more readily usable forms — often energy-rich carrier molecules. Adenosine 5'-triphosphate, or ATP, is the most abundant energy carrier molecule in cells.
(ATP) is comprised of an adenine ring, a ribose sugar, and three phosphate groups.