For this case, the first thing to do is to graph the following ordered pairs:
(-6, -1)
(-3, 2)
(-1,4)
(2,7)
We observe that the graph is a linear function with the following equation:
y = x + 5
Note: see attached image.
Answer:
The function that best represents the ordered pairs is:
y = x + 5
The baker would be able to make 465 cakes. Or D.
Because, 7 x 60 = 420. 60 ÷ 4 = 15. 15 x 3 = 45. 420 + 45 = 465.
Answer:
x = ± 1 , x = ± 
Step-by-step explanation:
Let u = x² , then
- 3x² + 2 = 0 , can be expressed as
u² - 3u + 2 = 0 ← in standard form
(u - 1)(u - 2) = 0 ← in factored form
Equate each factor to zero and solve for u
u - 1 = 0 ⇒ u = 1
u - 2 = 0 ⇒ u = 2
Change the variable u back to x
x² = 1 ( take square root of both sides )
x = ± 1
or
x² = 2 ( take square root of both sides )
x = ± 
Answer:
y= -2x-1
Step-by-step explanation:
Write in slope-intercept form, y=mx+by=mx+b.
Answer:
a = 22
Step-by-step explanation:
![cot \: 4a = tan \: (a - 20)....(given) \\ \\ \implies \: tan(90 - 4a) = tan \: (a - 20) \\ [\because \: cot \theta = tan(90 \degree - \theta) ]\\ \\ \implies (90 - 4a) = tan(a - 20) \\ \\ \implies \: 90 + 20 = 4a + a \\ \\\implies \: 110 = 5a \\ \\ \implies \: a = \frac{110}{5} \\ \\ \huge \red{ \boxed{\implies \: a = 22}}](https://tex.z-dn.net/?f=cot%20%5C%3A%204a%20%3D%20tan%20%5C%3A%20%28a%20-%2020%29....%28given%29%20%5C%5C%20%20%5C%5C%20%20%5Cimplies%20%5C%3A%20tan%2890%20-%204a%29%20%3D%20tan%20%5C%3A%20%28a%20-%2020%29%20%5C%5C%20%20%5B%5Cbecause%20%5C%3A%20cot%20%5Ctheta%20%3D%20tan%2890%20%5Cdegree%20-%20%20%5Ctheta%29%20%5D%5C%5C%20%20%5C%5C%20%5Cimplies%20%2890%20-%204a%29%20%3D%20tan%28a%20-%2020%29%20%5C%5C%20%5C%5C%20%20%5Cimplies%20%5C%3A%2090%20%20%2B%2020%20%3D%204a%20%2B%20a%20%5C%5C%20%20%5C%5C%5Cimplies%20%5C%3A%20%20110%20%3D%205a%20%5C%5C%20%20%5C%5C%20%5Cimplies%20%5C%3A%20a%20%3D%20%20%5Cfrac%7B110%7D%7B5%7D%20%20%5C%5C%20%20%5C%5C%20%5Chuge%20%5Cred%7B%20%5Cboxed%7B%5Cimplies%20%5C%3A%20%20a%20%3D%2022%7D%7D)