Answer:
1.52 g NaOH
Explanation:
The molar mass M is a physical property defined as the mass of a given substance (chemical element or chemical compound) divided by the amount of substance.
Molar mass of NaOH is 40.0 g/mol
40.0 g/mol contains 6.022 × 10²³ molecules
∴ 2.30 × 10²² molecules will contain (2.30 × 10²²) * (40.0)/6.022× 10²³
= 1.52 g NaOH
D odours
Thats the answer please mark me as brainiest
Electrons are valence and free moving so they take place in charge transfer
<h3>Answer:</h3>
There is One electrophilic center in acetyl chloride.
<h3>Explanation:</h3>
Electrophile is defined as any specie which is electron deficient and is in need of electrons to complete its electron density or octet. The main two types of electrophiles are those species which either contain positive charge (i.e. NO₂⁺, Cl⁺, Br⁺ e.t.c) or partial positive charge like that contained by the sp² hybridized carbon of acetyl chloride shown below in attached picture.
In acetyl chloride the partial positive charge on sp² hybridized carbon is generated due to its direct bonding to highly electronegative elements *with partial negative charge) like oxygen and chlorine, which tend to pull the electron density from carbon atom making it electron deficient and a good electrophile for incoming nucleophile as a center of attack.
M=mol/L, 0.323M=mol/0.01325. Rework to solve for mol and bam! (I.e. times the two numbers)