Answer: Choice B) 128
Explanation:
We'll add up the given arc measures and then cut the result in half to get the angle formed by the intersecting chords (that subtend the arcs in question).
chord angle = (arc1+arc2)/2
x = (54+202)/2
x = 256/2
x = 128
Answer:
<h2>
perimeter of △SMP = 25</h2>
Step-by-step explanation:
The perimeter of the triangle △SMP is the sum of al the sides of the triangle.
Perimeter of △SMP = ||MS|| + ||MP|| + ||SP||
Note that the triangle △LRN, △LSM, △MPN and △SRP are all scalene triangles showing that their sides are different.
Given LM=9, NR=16 and SR=8
NR = NP+PR
Since NP = PR
NR = NP+NP
NR =2NP
NP = NR/2 = 16/2
NP = 8
From △LSM, NP = PR = <u>MS</u><u> = 8</u>
Also since LM = MN, MN = 9
From △SRP, SR = RP = <u>PS = 9</u>
Also SR =<u> MP = 8</u>
From the equation above, perimeter of △SMP = ||MS|| + ||MP|| + ||SP||
perimeter of △SMP = 8+8+9
perimeter of △SMP = 25
= 16 + 49 - 3(11) - 4(10)
= 16 + 49 - 33 - 40
= -8