1. figure c
2.figure b
3. figure a b and c
The answer is 1 please give brainliest answer! If you do I’ll show you the most amazing app ever
Team A) 45 people
Team B) 55 people
A)There are two ways to solve this problem, finding the number of combinations possible for Team B, or the number of combinations possible for Team A.
Team A
It's a given that 20 mathematicians are on team A, which leavs the other 25 people for team A to be chosen from a pool of 80 (100- 20 mathletes)
80-C-25 = 80! / (25!/(80-25)!) =<span>363,413,731,121,503,794,368
</span>or 3.63 x 10^20
Solving using Team B
Same concept, but choosing 55 from a pool of 80 (mathletes excluded)
80-C-25 = 80! / (55!(80-55!) = 363,413,731,121,503,794,368
or 3.63 x 10^20
As you can, we get the same answer for both.
B)
If none of the mathematicians are on team A, then we exclude the 20 and choose 45:
80-C-45 = 80! / (45!(80-45)!) = <span>5,790,061,984,745,3606,481,440
or 5.79 x 10^22
Note that, if you solve from the perspective of Team B (80-C-35), you get the same answer</span>
Answer:
x = 34°
Step-by-step explanation:
Given AC and BD are perpendicular bisectors, we can say that at point E, there are 4 right angles [perpendicular bisectors intersect to create 4 90 degree angles].
Now, if we look at the triangle AED, we know that it is a right triangle, meaning that angle E is a right angle.
Also,
We know sum of 3 angles in a triangle is 180 degrees. Thus, we can write:
∠A + ∠E + ∠D = 180
<em>Note: Angle A and Angle D are just the half part of the diagram. More exactly we can write:</em>
∠EAD + ∠ADE + ∠DEA = 180
Given,
∠EAD = 56
∠DEA = 90
We now solve:
∠EAD + ∠ADE + ∠DEA = 180
56 + ∠ADE + 90 = 180
146 + ∠ADE = 180
146 + x = 180
x = 180 - 146
x = 34°