<u>Absorb:</u>
Shine a light with known intensity into the object.
Measure the intensity of the light that comes out.
Any light that goes in but doesn't come out the other side
was absorbed by the object.
(Note: You also need to be aware of any light that bounces back from
the first side without entering the object. That light is <em><u>reflected</u></em> from it,
and can't be expected to show up at the other side.)
<u>Transmit:</u>
Any light that goes in and DOES come out the other side
was transmitted by the object.
Answer:
Current in a parallel circuit = 0.61 amps (Approx)
Explanation:
Given:
Voltage V = 6 volt
Two resistors = 17.2 , 22.4 in parallel circuit
Find:
Current in a parallel circuit
Computation:
1/R = 1/r1 + 1 / r2
1/R = 1/17.2 + 1 / 22.4
R = 9.73 ohms (Approx)
Current in a parallel circuit = V / R
Current in a parallel circuit = 6 / 9.73
Current in a parallel circuit = 0.61 amps (Approx)
<u>A</u><u>n</u><u>s</u><u>w</u><u>e</u><u>r</u><u>:</u><u>-</u><em> </em><em>F</em><em>a</em><em>l</em><em>s</em><em>e</em>
<u>E</u><u>x</u><u>p</u><u>l</u><u>a</u><u>n</u><u>a</u><u>t</u><u>i</u><u>o</u><u>n</u><u>:</u><u>-</u>
<em>False because it can leads to overloading and further to short circut.</em>
<h2>
<em><u>H</u></em><em><u>o</u></em><em><u>p</u></em><em><u>e</u></em><em><u> </u></em><em><u>I</u></em><em><u>t</u></em><em><u> </u></em><em><u>W</u></em><em><u>i</u></em><em><u>l</u></em><em><u>l</u></em><em><u> </u></em><em><u>H</u></em><em><u>e</u></em><em><u>l</u></em><em><u>p</u></em><em><u> </u></em><em><u>Y</u></em><em><u>o</u></em><em><u>u</u></em><em><u>!</u></em></h2>
Obtaining the component part of the letter 'i' warns that it is the velocity is oriented on the X axis. At the same time the numeric part, in this particular case will represent the scalar part and therefore the magnitude of the vector.
The velocity is

The vector component of the velocity is

The scalar component of the velocity is

The magnitude of the velocity is

Answer:
26.6 m/s
Explanation:
Given:
Δy = 2.1 m
t = 5.35 s
a = -9.8 m/s²
Find: v₀
Δy = v₀ t + ½ at²
(2.1 m) = v₀ (5.35 s) + ½ (-9.8 m/s²) (5.35 s)²
v₀ = 26.6 m/s