The correct answer is "All of the above".
In fact, electromagnetic induction occurs when there is a change of the magnetic flux through the area enclosed by a circuit (in this case, the area enclosed by the wire loop).
The magnetic flux

through a certain surface is given by

(1)
Where B is the intensity of the magnetic field, A is the area enclosed by the circuit and

is the angle between the direction of the field B and the perpendicular to the area.
In the first situation, the magnet is getting closer to the loop, so the magnetic flux through the area enclosed by the wire is increasing (because the intensity of the magnetic field B is increasing). Situation 2) is the opposite case: the wire loop is moving away from the magnet, so the intensity of the magnetic field B is decreasing, and therefore the magnetic flux is decreasing as well.
Finally, in the third situation the wire loop is rotating. Here the distance between the loop and the magnet is not changing, but remember that the magnetic flux depends also on the angle between the direction of the magnetic field and the perpendicular (formula 1), and so since the wire loop is rotating, than this angle is changing, therefore the magnetic flux is changing as well.
Charles's Law<span>, or the </span>law<span> of volumes, was found in 1787 by Jacques </span>Charles<span>. It states that, for a given mass of an </span>ideal gas<span> at </span>constant<span> pressure, the volume is directly proportional to its absolute temperature, assuming in a closed system. The constant parameters would be the number of moles and pressure.</span>
Answer:
medium
Examples:
A medium is a thing that the sound wave would travel through, like sound waves traveling through air. A mechanical wave cannot travel without a medium, like if the wave were trying to travel through a vacuum.
Answer:
The galaxy is moving away from us
Explanation:
Galaxy refers to a system of millions or billions of stars accompanied by gas and dust such that they are held together as a result of gravitational attraction.
When we observe a distant galaxy, we find that a spectral line of hydrogen that is shifted from its normal location in the visible part of the spectrum into the infrared part of the spectrum.
It means that the galaxy is moving away from us.