Working Principle: Stratified Random Sampling
nx = (Nx/N)*n
where:
nx = sample size for stratum x
Nx = population size for stratum x
N = total population size
n = total sample size
Given:
Nx = 100
N = 1000
n = 0.5*(1000) = 500
Required: Probability of Man to be selected
Solution:
nx = (Nx/N)*n
nx = (100/1000)*500 = 50 men
ny = (Nx/N)*n
ny = (100/1000)*500 = 50 women
Probability of Man to be selected = nx/(nx + ny)*100 = 50/(50+50)*100 = 50%
<em>ANSWER: 50%</em>
4(2x-5)
8x-20
it is equal to 8x-20 because you simplify it and it turns into that.
HOPE I HELPED!!!
Answer:
Solutions:
, 
Step-by-step explanation:
Given the quadratic equation, 2x² + 3x + 6 = 0, where a =2, b = 3, and c = 6:
Use the <u>quadratic equation</u> and substitute the values for a, b, and c to solve for the solutions:



, 
Therefore, the solutions to the given quadratic equation are:
, 
It's a graph it's a the answer is a