From p1v1/t1 = p2v2/t2
pressure unchanged ... cancelled out
v1=605 , t1=27C = 300K,
t2=-3C = 270K
***remember temperature must be in Kelvin
we got
605/300 = v2/270
v2 = 545
Answer:
<em>Velocity is the rate at which the position changes</em>
<em>Velocity is the rate at which the position changesWhy do we need</em>
<em>Velocity is the rate at which the position changesWhy do we needVectors make it convenient to handle quantities going in different directions</em><em>.</em><em>.</em><em> </em>
Explanation:
Thank you!
When placing the piece of aluminium in water, the level of water will rise by an amount equal to the volume of the piece of aluminum.
Therefore, we need to find the volume of that piece.
Density can be calculated using the following rule:
Density = mass / volume
Therefore:
volume = mass / density
we are given that:
the density = 2.7 g / cm^3
the mass = 16 grams
Substitute in the equation to get the volume of the piece of aluminum as follows:
volume = 16 / 2.7 = 5.9259 cm^3
Since the water level will rise to an amount equal to the volume of aluminum, therefore, the water level will rise by 5.9259 cm^3
Answer:
Explanation:
A ) When gymnast is motionless , he is in equilibrium
T = mg
= 63 x 9.81
= 618.03 N
B )
When gymnast climbs up at a constant rate , he is still in equilibrium ie net force acting on it is zero as acceleration is zero.
T = mg
= 618.03 N
C ) If the gymnast climbs up the rope with an upward acceleration of magnitude 0.600 m/s2
Net force on it = T - mg , acting in upward direction
T - mg = m a
T = mg + m a
= m ( g + a )
= 63 ( 9.81 + .6)
= 655.83 N
D ) If the gymnast slides down the rope with a downward acceleration of magnitude 0.600 m/s2
Net force acting in downward direction
mg - T = ma
T = m ( g - a )
= 63 x ( 9.81 - .6 )
= 580.23 N