Answer:
24erfvtgvcd2s
Explanation:
2d343f5vrc3344drews3wqqeq
A) We balance the masses: 4(1.00728) vs 4.0015 + 2(0.00055)4.02912 vs. 4.0026This shows a "reduced mass" of 4.02912 - 4.0026 = 0.02652 amu. This is also equivalent to 0.02652/6.02E23 = 4.41E-26 g = 4.41E-29 kg.
b) Using E = mc^2, where c is the speed of light, multiplying 4.41E-29 kg by (3E8 m/s)^2 gives 3.96E-12 J of energy.
c) Since in the original equation, there is only 1 helium atom, we multiply the energy result in b) by 9.21E19 to get 3.65E8 J of energy, or 365 MJ of energy.
If you draw the problem, it would look like that shown in the attached picture. The total length the ship will now travel can be solved using the Pythagorean theorem. The solution is as follows:
d = √(120)²+(100)²
d = 156.2 km
So, the ship will have to travel 156.2 km to the northwest direction.
D, releases a massive amount of energy as heat Hope this helps
Answer:
It would take approximately 289 hours for the population to double
Explanation:
Recall the expression for the continuous exponential growth of a population:

where N(t) measures the number of individuals, No is the original population, "k" is the percent rate of growth, and "t" is the time elapsed.
In our case, we don't know No (original population, but know that we want it to double in a certain elapsed "t". We also have in mind that the percent rate "k" would be expressed in mathematical form as: 0.0024 (mathematical form of the given percent growth rate).
So we need to solve for "t" in the following equation:

Which can be rounded to about 289 hours