Answer:
B is True
A, C. D are false
Step-by-step explanation:
Given :
Sample size, n = 120
Mean diameter, m = 10
Standard deviation, s = 0.24
Confidence level, Zcritical ; Z0.05/2 = Z0.025 = 1.96
The confidence interval represents how the true mean value compares to a set of values around the mean computed from a set of sample drawn from the population.
The population here is N = 10000
To obtain
Confidence interval (C. I) :
Mean ± margin of error
Margin of Error = Zcritical * s/sqrt(n)
Margin of Error = 1.96 * 0.24/sqrt(120)
Confidence interval for the 10,000 ball bearing :
10 ± 1.96 * (0.24) / sqrt(120)
Hence. The confidence interval defined as :
10 ± 1.96 * (0.24) / sqrt(120) is the 95% confidence interval for the mean diameter of the 10,000 bearings in the box.
Answer:
.
14
Step-by-step explanation:
Answer:
A) The height of the water increases 2 inches per minute.
Step-by-step explanation:
Slope is the rate of change of height
m = (16 - 12)/(4 - 2) = 4/2 = 2
2 inch per min
Positive slope implies increase
I believe a qualitative prediction requires a prediction with out any numerical data to support it while a quantitative predictions require a prediction supported by numerical data.
A real world example of this is in chemistry during a lab. qualitative data is based off of observation with out numerical data such as a color change. quantitative data is based off of observation with numerical data such as the mass changes.
(quantitative prediction is decision from data based on percentages, probabilities, and so on while qualitative predictions are based off of given information).
I hope this helps and let me know if you need further explaining.