Speed of the plane: 250 mph
Speed of the wind: 50 mph
Explanation:
Let p = the speed of the plane
and w = the speed of the wind
It takes the plane 3 hours to go 600 miles when against the headwind and 2 hours to go 600 miles with the headwind. So we set up a system of equations.
600
m
i
3
h
r
=
p
−
w
600
m
i
2
h
r
=
p
+
w
Solving for the left sides we get:
200mph = p - w
300mph = p + w
Now solve for one variable in either equation. I'll solve for x in the first equation:
200mph = p - w
Add w to both sides:
p = 200mph + w
Now we can substitute the x that we found in the first equation into the second equation so we can solve for w:
300mph = (200mph + w) + w
Combine like terms:
300mph = 200mph + 2w
Subtract 200mph on both sides:
100mph = 2w
Divide by 2:
50mph = w
So the speed of the wind is 50mph.
Now plug the value we just found back in to either equation to find the speed of the plane, I'll plug it into the first equation:
200mph = p - 50mph
Add 50mph on both sides:
250mph = p
So the speed of the plane in still air is 250mph.
Answer:
Oh Stop!!!! This is sooooooooooooo easy! If you would just pay attention in school and not spend all your time trying to buy the new ipad pro maybe you would not have to go to Branily to get a simple answer! Do you think your teacher would like you cheating like this???? I dont think so. So get of of Branily and start studying!!!!
Step-by-step explanation:
Solution
Step 1
The opposite angles of a parallelogram are equal:
Step 2
The equation is made true by the opposite angles theorem is
85 + y = 3y - 15
or
y = 50
Answer:
3 ft by 6ft
Step-by-step explanation:
Divide both dimensions by 4 then subtract that from the original
Answer:
Population, well, it is recorded as partners and 642x153=98226 is calculated correctly, you divided by 2 which is 98226 divided by 2 is 49113.