Answer:
1 : a set each of whose elements is an element of an inclusive set. 2 : division, portion a subset of our community.
Step-by-step explanation:
In mathematics, set A is a subset of a set B if all elements of A are also elements of B; B is then a superset of A. It is possible for A and B to be equal; if they are unequal, then A is a proper subset of B. The relationship of one set being a subset of another is called inclusion
hope this helps
The answer to your question is 3/8.
Answer:
y = (3/4)x + 2
Step-by-step explanation:
Slope-intercept form is y=mx+b where (x, y) is a point on the linear graph, m is the slope (rise/run), and b is the y-intercept (the y-value at which the graph passes through the y-axis).
Looking at the graph, we can see that the point at which the line crosses the y-axis is (0, 2) which makes it the y-intercept. Thus, the b in the slope-intercept form is 2.
Next, we are looking for the slope of the line. To do this, we can calculate the rise/run of the line by choosing to points on it. Since we already have the point (0, 2), we just need one more.
For example, the point (-4, -1) can be used. The slope can be found by ((y-y)/(x-x)) in which the first y and x values correspond with the first point and that of the second correspond with the second set. So in this case, m = (2-(-1))/(0-(-4)) = 3/4
Plugging in the calculated m and b value in the slope intercept equation, we get y = (3/4)x + 2
Answer:
GI = 18; GE = 12; IE = 6
Step-by-step explanation:
The key to the question is to realize or find out what a centroid is and what it does. You can solve this question by knowing three things.
- The centroid is the meeting point of the three medians ( a median is a line that connects the midpoint of the side opposite a given vertex).
- The centroid divides the median in a ratio of 2:1. The longest segment is from the vertex to the centroid.
- The shortest segment is from the centroid to the midpoint of the side opposite the given vertex.
Point two is what you have to focus on.
GE/EI = 2/1
GE = 12 Given
Solution
GE / EI = 2/1 Substitute for the given
12 / EI = 2/1 Cross multiply
2*EI = 12 * 1 Simplify the right
2 * EI = 12 Divide by 2
EI = 12/2 Divide
Part Two
GI = EI + GE
GI = 6 + 12
GI = 18
EI = 6