1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrRa [10]
3 years ago
7

What are the three choices equivalent to 27^4/3

Mathematics
1 answer:
12345 [234]3 years ago
8 0

the answers are B,D and F

You might be interested in
Solve the equation for y (picture below)<br> Please show work and solve as much as you can
Alina [70]
2)
4x-10y=12

Subtract 4x from each side.
-10y=-4x+12

Divide both sides by -10
y=2/5x-6/5

3)
13=1/6y+2x

Subtract 2x from each side.
-2x+13=1/6y

Multiply both sides by 6.
-12x+78=y

Flip it around.
y=-12x+78

Hope this helps!
5 0
3 years ago
PLS HELP !!! GIVING OUT BRAINLIEST ANSWER !! PLS HELP ASAP
never [62]

Answer:

The bottom one (D) the end it is sitting on

Step-by-step explanation:

what's there to explain xD

7 0
2 years ago
This week laptops are 25 percent off if a laptop cost $340 what is it's sale price
Nata [24]
The sale price is 255 dollars.
To get the answer you find out that ten percent of 340 is 34 dollars. then you double the percentage which brings you to 68 dollars. but you still have 5 percent left over. Half of the ten percent is 17 dollars. finally you add 68 plus 17 which gives you 84 dollars. Lastly subtract 84 dollars from 340 which gives you 255

Hope this helps! :)
3 0
3 years ago
Read 2 more answers
Pls help.<br> I WILL MARK BRAINLIEST!
goblinko [34]

Answer:

c

Step-by-step explanation:

because if you look at the line below it it shows 180 degrees because it is a straight line if that makes sense. if not just trust me.

6 0
3 years ago
Read 2 more answers
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Other questions:
  • A small rectangular swimming pool in a fitness centre measures 4 metres by 10 metres. It is surrounded by a path of width x mete
    14·1 answer
  • Please help me! These are due at 3 and I’m freaking out<br> Lol
    13·1 answer
  • Traffic flow is traditionally modeled as a Poisson distribution.A traffic engineer monitors the traffic flowing through an inter
    11·1 answer
  • Are all integers are rational numbers
    11·1 answer
  • On a coordinate grid the coordinates of vertices p and q for polygon pars are p(5,4) and q(-2,4) what is the length of side pq?
    14·1 answer
  • 2 Points
    5·1 answer
  • Please answer 14 and 15 please!
    15·1 answer
  • A company gives a bonus to two salespeople, Miss Xu and Ms Trent, in the ratio of the
    8·1 answer
  • PLEASE HELP ASAP (8th grade question)
    15·1 answer
  • How do you solve (x+4)2 ?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!