<em>So</em><em>,</em><em>the</em><em> </em><em>length </em><em>of</em><em> </em><em>rectangle </em><em>is</em><em> </em><em>2</em><em>4</em><em> </em><em>cm</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em>The</em><em> </em><em>breadth</em><em> </em><em>of</em><em> </em><em>recta</em><em>ngle</em><em> </em><em>is</em><em> </em><em>1</em><em>8</em><em> </em><em>cm</em>
<em>please</em><em> </em><em>see</em><em> </em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em> </em><em>for</em><em> </em><em>full</em><em> </em><em>solution</em>
<em>H</em><em>ope</em><em> </em><em>it</em><em> </em><em>helps</em>
<em>Good</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>
Thet contradict each other, that's why both of them are incorrect.
<span>Suppose that a polynomial has four roots: s, t, u, and v. If the polynomial were evaluated at any of these values, it would have to be zero. Therefore, the polynomial can be written in this form.
p(x)(x - s)(x - t)(x - u)(x - v), where p(x) is some non-zero polynomial
This polynomial has a degree of at least 4. It therefore cannot be cubic.
Now prove Kelsey correct. We have already proved that there can be no more than three roots. To prove that a cubic polynomial with three roots is possible, all we have to do is offer a single example of that. This one will do.
(x - 1)(x - 2)(x - 3)
This is a cubic polynomial with three roots, and four or more roots are not possible for a cubic polynomial. Kelsey is correct.
Incidentally, if this is a roller coaster we are discussing, then a cubic polynomial is not such a good idea, either for a vertical curve or a horizontal curve. I hope this helps</span><span>
</span>
0.043 is the correct answer :$
Answer:
Figure or Diagram Mandatory
GOOD LUCK FOR THE FUTURE! :)