We have to prove that rectangles are parallelograms with congruent Diagonals.
Solution:
1. ∠R=∠E=∠C=∠T=90°
2. ER= CT, EC ║RT
3. Diagonals E T and C R are drawn.
4. Shows Quadrilateral R E CT is a Rectangle.→→[Because if in a Quadrilateral One pair of Opposite sides are equal and parallel and each of the interior angle is right angle than it is a Rectangle.]
5. Quadrilateral RECT is a Parallelogram.→→[If in a Quadrilateral one pair of opposite sides are equal and parallel then it is a Parallelogram]
6. In Δ ERT and Δ CTR
(a) ER= CT→→[Opposite sides of parallelogram]
(b) ∠R + ∠T= 90° + 90°=180°→→→Because RECT is a rectangle, so ∠R=∠T=90°]
(c) Side TR is Common.
So, Δ ERT ≅ Δ CTR→→[SAS]
Diagonal ET= Diagonal CR →→→[CPCTC]
In step 6, while proving Δ E RT ≅ Δ CTR, we have used
(b) ∠R + ∠T= 90° + 90°=180°→→→Because RECT is a rectangle, so ∠R=∠T=90°]
Here we have used ,Option (D) : Same-Side Interior Angles Theorem, which states that Sum of interior angles on same side of Transversal is supplementary.
It seems to me like Felicia needs to pay the total of 2.5 months rent before she moves in (1.5 security deposit and 1 rent). Multiply 470 by 2.5:
470 * 2.5 = 1175
Felicia needs to pay $1175 before she moves into her apartment.
9) 147
10) 145
greatest common factor is 14 I think
Answer:
(1+r/12)=1.075
r/12=0.075
r=0.9 or 90%
Step-by-step explanation:
Answer:
its the third one
Step-by-step explanation: