Parental Phenotypes: Smooth Green × Smooth Green
Parental Genotypes: SsGg × SsGg
Parental Gametes: SG, sG, Sg, sg
Punnet Square: **In the figure**
11. Smooth/Green = 9
Wrinklen Green = 3
Smooth/Yellow = 3
Wrinkled Yellow = 1
Hope this helps!
Answer:
Heterotrophs or consumers
Explanation:
This are organisms that cannot produce their own food. They rely on autotrophs ( plants or producers ) for food. Most of the times these are normally animals.
HOPE THIS HELPED
Answer:
it should be the snake bc I have one and the mouse gets eat in by the snake
Answer:columnar epithelium
Explanation:
Collecting ducts are readily recognized in the renal medulla, as relatively large tubules lined by cuboidal epithelium, in which the epithelial cells are relatively clear (i.e., not as eosinophilic as proximal and distal tubules) and have distinct cell borders
1. The right answer is enzymes
NADPH are molecules which are produced during reduction of metabolites (for example glucose metabolism, lipid metabolism...)
2. The right answer is enzymes.
<span>The dark reactions (carbon cycle) act by the reduction of carbon dioxides (CO2) to the level of a carbohydrate (like fructose).
</span>
3. The right answer is ATP.
ATP, or adenosine triphosphate, is a nucleotide of the purine family used to store and transport energy (purines are nitrogenous bases).
4. The right answer is the Calvin cycle.
The Calvin cycle is a series of biochemical reactions that take place in plant chloroplasts. The Calvin cycle makes it possible to manufacture glucose, an energy molecule, from carbon dioxide. This is called carbon fixation.
5. The right answer is NADH
The overall assessment of glycolysis is:Glucose + 2 ADP + 2 Pi + 2 NAD + -----> 2 pyruvate + 2 ATP + 2 H2O + 2 NADH
As we can see, the glycolysis produce indeed 2NADH from a reduction of metabolites during the process.
6. The right answer is Glycolysis.
Glycolysis is the first chain of carbohydrate catabolism, it is carried out in the cytosol by soluble enzymes and anaerobically (without oxygen supply). Its function is the synthesis of a molecule rich in energy, as well as the formation of pyruvate which will have several destinies, including the Krebs cycle.
<span>The Krebs cycle (or tricarboxylic cycle or citric acid cycle) is the energy platform of the cell, continuing the catabolism of carbohydrates after glycolysis. It is realized in the mitochondrial matrix and is done exclusively in aerobic.</span>