The area of sector is 1.57 m²
<u>Explanation:</u>
Given:
Radius, r = 3 m
Central angle of a sector = 1/9π radians
Area of sector, A = ?
We know:
Area of sector, A = 
where,
α is the central angle in radians
On substituting the value we get:

Therefore, the area of sector is 1.57 m²
Answer:
Two possible lengths for the legs A and B are:
B = 1cm
A = 14.97cm
Or:
B = 9cm
A = 12cm
Step-by-step explanation:
For a triangle rectangle, Pythagorean's theorem says that the sum of the squares of the cathetus is equal to the hypotenuse squared.
Then if the two legs of the triangle are A and B, and the hypotenuse is H, we have:
A^2 + B^2 = H^2
If we know that H = 15cm, then:
A^2 + B^2 = (15cm)^2
Now, let's isolate one of the legs:
A = √( (15cm)^2 - B^2)
Now we can just input different values of B there, and then solve the value for the other leg.
Then if we have:
B = 1cm
A = √( (15cm)^2 - (1cm)^2) = 14.97
Then we could have:
B = 1cm
A = 14.97cm
Now let's try with another value of B:
if B = 9cm, then:
A = √( (15cm)^2 - (9cm)^2) = 12 cm
Then we could have:
B = 9cm
A = 12cm
So we just found two possible lengths for the two legs of the triangle.
Answer: (-3,-2)
Step-by-step explanation:
Answer:
he would end up with 3000$ in 10 years with simple interest
Step-by-step explanation: