For this case we have that by definition, the perimeter of the quadrilateral shown is given by the sum of its sides:
Let "p" be the perimeter of the quadrilateral, then:
![p = 7 + y + 7 + x\\p = 7 + 7 + x + y\\p = 14 + x + y](https://tex.z-dn.net/?f=p%20%3D%207%20%2B%20y%20%2B%207%20%2B%20x%5C%5Cp%20%3D%207%20%2B%207%20%2B%20x%20%2B%20y%5C%5Cp%20%3D%2014%20%2B%20x%20%2B%20y)
So, the perimeter of the figure is: ![14 + x + y](https://tex.z-dn.net/?f=14%20%2B%20x%20%2B%20y)
Answer:
![p = 14 + x + y](https://tex.z-dn.net/?f=p%20%3D%2014%20%2B%20x%20%2B%20y)
Answer:
8 units squared.
Step-by-step explanation:
Assuming the numbers are the length and width, we can use the formula for finding the area of the rectangle.
The area should be eight units squared.
![a = l * w\\a = 4 * 2\\a= 8](https://tex.z-dn.net/?f=a%20%3D%20l%20%2A%20w%5C%5Ca%20%3D%204%20%2A%202%5C%5Ca%3D%208)
Answer:
A) slope of f(x) = 3 , slope of g(x) = 7
B) y intercept of f(x) is 0 and g(x) is 2
So g(x) has greater y intercept
Step-by-step explanation:
Lets find equation of f(x) using the given table
LEts take two points from the table (0,0) (1,3)
![slope = \frac{y_2-y_1}{x_2-x_1} = \frac{3-0}{1-0} = 3](https://tex.z-dn.net/?f=slope%20%3D%20%5Cfrac%7By_2-y_1%7D%7Bx_2-x_1%7D%20%3D%20%5Cfrac%7B3-0%7D%7B1-0%7D%20%3D%203)
we use equation y=mx+b
where m is the slope and b is the y intercept
we got m = 3, we use (0,0) and find out b
y=mx+b
0 = 3(0) + b
so b=0
So equation for f(x)= 3x +0
slope =3 and y intercept = 0
For equation g(x) = 7x +2 , slope = 7 and y intercept = 2