Answer:
i hope this helps some
Explanation:
The time-averaged power of a sinusoidal wave is proportional to the square of the amplitude of the wave and the square of the angular frequency of the wave. This is true for most mechanical waves. If either the angular frequency or the amplitude of the wave were doubled, the power would increase by a factor of four.
The speed of a wave is dependant on four factors: wavelength, frequency, medium, and temperature. Wave speed is calculated by multiplying the wavelength times the frequency (speed = l * f).
Answer:
C
Explanation:
An equilibrium is when all forces are the same or canceled out. So it would have to be c.
Answer:
block K = 29.39 J and spring #1 Ke = 360 J
Explanation:
In this problem we have that the elastic energy of the spring becomes part kinetic energy and the part in work against the force of friction, so, to use the law of conservation of energy, the decrease in energy is the rubbing force work
= Ef - E₀
Let's look for the energies
Initial
E₀ = Ke = ½ k₁ x₁²
Final, this is just before starting to compress the spring
Ef = Ke = ½ m v²
The work of the rubbing force is
= -fr x
Let's write Newton's second law the y axis
N-W = 0
N = W
fr = μ N
fr = μ mg
Let's replace
-μ mg x = ½ m v² - ½ k₁ x₁²
v² = 2/m (½ k₁ x1₁² -μ mg x)
v² = 2/6 (½ 2000 0.6²2 - 0.5 6 9.8 1) = 1/3 (360 - 29.4)
v = 3.13 m / s
With this value we calculate the energy of the block
K = ½ m v²
K = ½ 6 3.13²
K = 29.39 J
Calculate eenrgy of the spring ke 1
Ke = ½ k₁ x₁²
Ke = ½ 2000 0.60²
Ke = 360 J