1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dmitriy555 [2]
3 years ago
10

A weightlifter lifts a 1,250 N barbell 2 m in 3 s. How much power was used to lift the barbell?

Physics
1 answer:
OverLord2011 [107]3 years ago
5 0
brainly.com/question/1478685 
You might be interested in
A baseball with a mass of 0.80 kg is given an acceleration of 20.00 m/s. How much net force was applied to the ball
dybincka [34]

a x m = f

.80 x 20 = 16

4 0
3 years ago
Which benefit outweighs the risks in the technological design of headphones?
Dmitriy789 [7]

Answer:

The Answer is A They can damage hearing.

Explanation:

I took the Test

7 0
3 years ago
Calculate the energy, wavelength, and frequency of the emitted photon when an electron moves from an energy level of -3.40 eV to
jasenka [17]

Answer:

(a) The energy of the photon is 1.632 x 10^{-8} J.

(b) The wavelength of the photon is 1.2 x 10^{-17} m.

(c) The frequency of the photon is 2.47 x 10^{25} Hz.

Explanation:

Let;

E_{1} = -13.60 ev

E_{2} = -3.40 ev

(a) Energy of the emitted photon can be determined as;

E_{2} - E_{1} = -3.40 - (-13.60)

           = -3.40 + 13.60

           = 10.20 eV

           = 10.20(1.6 x 10^{-9})

E_{2} - E_{1} = 1.632 x 10^{-8} Joules

The energy of the emitted photon is 10.20 eV (or 1.632 x 10^{-8} Joules).

(b) The wavelength, λ, can be determined as;

E = (hc)/ λ

where: E is the energy of the photon, h is the Planck's constant (6.6 x 10^{-34} Js), c is the speed of light (3 x 10^{8} m/s) and λ is the wavelength.

10.20(1.6 x 10^{-9}) = (6.6 x 10^{-34} * 3 x 10^{8})/ λ

λ = \frac{1.98*10^{-25} }{1.632*10^{-8} }

  = 1.213 x 10^{-17}

Wavelength of the photon is 1.2 x 10^{-17} m.

(c) The frequency can be determined by;

E = hf

where f is the frequency of the photon.

1.632 x 10^{-8}  = 6.6 x 10^{-34} x f

f = \frac{1.632*10^{-8} }{6.6*10^{-34} }

 = 2.47 x 10^{25} Hz

Frequency of the emitted photon is 2.47 x 10^{25} Hz.

6 0
2 years ago
Momentum=mass X velocity
Sliva [168]

Answer:

Hope it helped

stay safe, mark BRAINLIEST

6 0
2 years ago
Why is Pluto now called a dwarf planet
zvonat [6]
Before Pluto was discovered, it was predicted. Astronomers had observed that massive objects can affect the orbits of its neighbors, and, after seeing deviations in the orbits of Uranus and Neptune, assumed something substantial existed beyond their orbits.
When Pluto was spotted, it was thought to be the predicted object and was identified as a ninth planet.
A few decades later, astronomers started discovering more and more objects around other stars and didn’t know whether to call them planets or not. There appeared to be a need to define what a planet means, and that led to what some people consider Pluto’s demotion to a dwarf planet.
The International Astronomical Union decided that full-sized planets must orbit the sun, have a round shape, and have cleared their orbits of other objects. Pluto fulfills the first two criteria, but not the third.
It still goes around the sun, it’s round enough, it’s got moons, and behaves like a planet, but the idea is that Pluto did not form the same way as the rest of the planets. Pluto’s orbit is both eccentric and inclined more than the rest of the planets by about 17 degrees. That’s suggests something is different about this object.
This debate about whether to call it a planet or not is silly, because it doesn’t matter to Pluto what you call it. It is an interesting object, goes around the sun, and shows geology and an atmosphere.
There’s a tendency to define objects based on what they are now, but nothing is constant in the universe. There are some issues with the nomenclature, and a definition today may not apply to the same object tomorrow.
7 0
3 years ago
Read 2 more answers
Other questions:
  • The International Space Station has a mass of 1.8 × 105 kg. A 70.0-kg astronaut inside the station pushes off one wall of the st
    11·1 answer
  • Which of the following leads most directly to the production of igneous rocks?
    8·1 answer
  • As a bat flies toward a wall at a speed of 6.0 m/s, the bat emits an ultrasonic sound wave with frequency 30.0 kHz. What frequen
    13·1 answer
  • According to the kinetic theory, all matter is composed of _______.
    11·2 answers
  • On an essentially frictionless, horizontal ice rink, a skater moving at 3.0 m/s encounters a rough patch that reduces her speed
    5·1 answer
  • I need help with forms of energy.
    14·1 answer
  • Two cars are traveling along a straight line in the same direction, the lead car at 24.7m/s and the other car at 29.9m/s. at the
    6·1 answer
  • Development occurs:
    15·1 answer
  • The coefficient of kinetic friction for a 22 kg bobsled on a track is 0.10. What force is required to push it down a 5.0 degree
    10·1 answer
  • If 2 ma of current flow in your mp3 player, how long will it take for 1 c of charge to flow?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!