Answer:
B)
The magnitude of induced emf in the conducting loop is 0.99 mV.
Explanation:
Rate of increase in magnetic field per unit time = 0.090 T/s
Area of the conducting loop = 110 cm^2 = 0.0110 m^2
Electromagnetic induction is the production of an emf or voltage in a coil of wire due to a changing magnetic field through the coil.
Induced e.m.f is given as:
EMF = (-N*change in magnetic field/time)*Area
EMF = rate of change of magnetic field per unit time * Area
EMF = 0.090 * 0.0110
EMF = 0.00099 V
EMF = 0.99 mV
Explanation:
What is IEEE 802.11?
IEEE 802.11 is a set of WLAN standards for communication developed by the Institute for Electrical and Electronics Engineers (IEEE) and is unarguably most widely used WLAN technology.
Features: IEEE 802.11a
- The operating frequency band is 5 GHz.
- The maximum theoretical data rate is 54 Mbps, the typical throughput is around 25 Mbps and minimum data rate is 6 Mbps.
- It can support 64 users per access point.
Features: IEEE 802.11b
- The operating frequency band is 2.4 GHz.
- The maximum theoretical data rate is 11 Mbps but typical throughput is around 6 Mbps and minimum data rate is 1 Mbps.
- It can support 32 users per access point.
Wireless Coverage IEEE 802.11a Vs IEEE 802.11b:
- Signal coverage is one of the most important factors among users.
- The transmission range of IEEE 802.11a is not greater than 100 ft in indoor setting whereas IEEE 802.11b has a superior performance in this regard with transmission range up to 150 ft in indoor setting.
- The data rate has a direct relation with the access point coverage area, a higher data rate means less coverage area and a lower data rate results in increased coverage.
Potential energy can be calculated using the following rule:
potential energy = mgh where:
m is the mass = 85 kg
g is the acceleration due to gravity = 9.8 m/sec^2
h is the height = 4 km = 4000 meters
Substitute in the above equation to get the potential energy as follows:
Potential energy = 85*9.8*4000 = 3332000 joules