Answer:
0.125 volts
Explanation:
The induced emf can be sufficient to stimulate neuronal activity.
One such device generates a magnetic field within the brain that rises from zero to 1.5 T in 120 ms.
We need to find the induced emf within a circle of tissue of radius 1.6 mm and that is perpendicular to the direction of the field. The formula for the induced emf is given by :

Where
is magnetic flux
So,

So, the induced emf is equal to 0.125 volts.
Answer:
857.5 m
2.8583×10⁻⁶ seconds
Explanation:
Time taken by the sound of the thunder to reach the student = 2.5 s
Speed of sound in air is 343 m/s
Speed of light is 3×10⁸ m/s
Distance travelled by the sound = Time taken by the sound × Speed of sound in air
⇒Distance travelled by the sound = 2.5×343 = 857.5 m
⇒Distance travelled by the sound = 857.5 m
Time taken by light = Distance the light travelled / Speed of light

Time taken by light = 2.8583×10⁻⁶ seconds
Density = (mass) / (volume)
4,000 kg/m³ = (mass) / (0.09 m³)
Multiply each side
by 0.09 m³ : (4,000 kg/m³) x (0.09 m³) = mass
mass = 360 kg .
Force of gravity = (mass) x (acceleration of gravity)
= (360 kg) x (9.8 m/s²)
= (360 x 9.8) kg-m/s²
= 3,528 newtons .
That's the force of gravity on this block, and it doesn't matter
what else is around it. It could be in a box on the shelf or at
the bottom of a swimming pool . . . it's weight is 3,528 newtons
(about 793.7 pounds).
Now, it won't seem that heavy when it's in the water, because
there's another force acting on it in the upward direction, against
gravity. That's the buoyant force due to the displaced water.
The block is displacing 0.09 m³ of water. Water has 1,000 kg of
mass in a m³, so the block displaces 90 kg of water. The weight
of that water is (90) x (9.8) = 882 newtons (about 198.4 pounds),
and that force tries to hold the block up, against gravity.
So while it's in the water, the block seems to weigh
(3,528 - 882) = 2,646 newtons (about 595.2 pounds) .
But again ... it's not correct to call that the "force of gravity acting
on the block in water". The force of gravity doesn't change, but
there's another force, working against gravity, in the water.
Explanation:
m = mass of burrito thrown by the student = 0.5 kg
a = acceleration of the burrito thrown by the student = 3 m/s²
F = force applied by the student on the burrito = ?
According to newton's second law , the net force on an object is the product of its mass and acceleration. it is given as
F = ma
inserting the values
F = (0.5) (3)
F = 1.5 N
hence the net force on the burrito comes out to be 1.5 N