Well it would be 63$ if we are not including tax because 80-17=63
Given:

To find:
The correct function.
Explanation:
Let us consider the function given in option D.

Differentiating with respect to x we get,

Substituting x = 2 in the function f(x), we get

Therefore, the given conditions are satisfied.
So, the function is,

Final answer: Option D
We can rewrite the expression under the radical as

then taking the fourth root, we get
![\sqrt[4]{\left(\dfrac32a^2b^3c^4\right)^4}=\left|\dfrac32a^2b^3c^4\right|](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cleft%28%5Cdfrac32a%5E2b%5E3c%5E4%5Cright%29%5E4%7D%3D%5Cleft%7C%5Cdfrac32a%5E2b%5E3c%5E4%5Cright%7C)
Why the absolute value? It's for the same reason that

since both
and
return the same number
, and
captures both possibilities. From here, we have

The absolute values disappear on all but the
term because all of
,
and
are positive, while
could potentially be negative. So we end up with

Answer:
231 your welcome
Step-by-step explanation:
Answer:
B) The maximum y-value of f(x) approaches 2
C) g(x) has the largest possible y-value
Step-by-step explanation:
f(x)=-5^x+2
f(x) is an exponential function.
Lim x→∞ f(x) = Lim x→∞ (-5^x+2) = -5^(∞)+2 = -∞+2→ Lim x→∞ f(x) = -∞
Lim x→ -∞ f(x) = Lim x→ -∞ (-5^x+2) = -5^(-∞)+2 = -1/5^∞+2 = -1/∞+2 = 0+2→
Lim x→ -∞ f(x) = 2
Then the maximun y-value of f(x) approaches 2
g(x)=-5x^2+2
g(x) is a quadratic function. The graph is a parabola
g(x)=ax^2+bx+c
a=-5<0, the parabola opens downward and has a maximum value at
x=-b/(2a)
b=0
c=2
x=-0/2(-5)
x=0/10
x=0
The maximum value is at x=0:
g(0)=-5(0)^2+2=-5(0)+2=0+2→g(0)=2
The maximum value of g(x) is 2