I think you're saying that once you start pushing on the cars, you want to be able to stop each one in the same time.
This is sneaky. At first, I thought it must be both 'c' and 'd'. But it's not
kinetic energy, for reasons I'm not ambitious enough to go into.
(And besides, there's no great honor awarded around here for explaining
why any given choice is NOT the answer.)
The answer is momentum.
Momentum is (mass x speed). Change in momentum is (force x time).
No matter the weight (mass) or speed of the car, the one with the greater
momentum is always the one that will require the greater (force x time)
to stop it. If the time is the same for any car, then more momentum
will always require more force.
Answer:
Do u have a picture of the graph?
Explanation:
I can solve it with refraction
To solve this problem we will apply the concepts related to the balance of Forces, the centripetal Force and Newton's second law.
I will also attach a free body diagram that allows a better understanding of the problem.
For there to be a balance between weight and normal strength, these two must be equivalent to the centripetal Force, therefore


Here,
m = Net mass
= Angular velocity
r = Radius
W = Weight
N = Normal Force

The net mass is equivalent to

Then,

Replacing we have then,

Solving to find the angular velocity we have,

Therefore the angular velocity is 0.309rad/s