The answer that best fits the blank is the term WAXING. The moon is waxing whenever it reaches to the period that its phases are transitioning from new to full. The answer is the first option. This is when it is more that half is illuminated. Hope this helps.
Answer:
Explanation:
I can tell you what the answers for the middle column are, but if you don't know how to solve total energy problems, they won't make any sense to you at all.
First row, KE = 0
Second row, KE = 220500 J
Third row, KE = 183750 J
Fourth row, KE = 205800 J
That's also not paying any attention to significant digits because your velocity only had 1 and that's not enough to do the problem justice. I left all the digits in the answer. Round how your teacher tells you to.
Answer:
a. 16 s b. -1.866 kJ
Explanation:
a. Since the initial rotational speed ω₀= 3313 rev/min = 3313/60 × 2π rad/s = 346.94 rad/s. Its rotational speed becomes ω₁ = 0.75ω₀ in time t = 4 s.
We find it rotational acceleration using α = (ω₁ - ω₀)/t = (0.75ω₀ - ω₀)/t = ω₀(0.75 - 1)/t = -0.25ω₀/t = (-0.25 × 346.94 rad/s)/4 s = -21.68 rad/s².
Since the turntable stops at ω = 0, the time it takes to stop is gotten from
ω = ω₀ + αt and t = (ω - ω₀)/α = (0 - 346.94 rad/s)/-21.68 rad/s² = (-346.94/-21.68) s = 16 s.
So it takes the turntable 16 s to stop.
b. The workdone by the turntable to stop W equals its rotational kinetic energy change.
So, W = 1/2Iω² - 1/2Iω₀² = 1/2 × 0.031 kgm² × 0² - 1/2 × 0.031 kgm² × (346.94 rad/s)² = 0 - 1865.7 J = -1865.7 J = -1.8657 kJ ≅ -1.866 kJ
Q before connected = Q after connected C1V1+C2V2 = (C1+C2) V
C1= 3×10^-6 F
V1= 480v
C2= 4×10^-6 F
V2= 500v
(3×10^-6)×(480) + (4×10^-6)×(500) = (3×10^-6 + 4×10^-6) × V
Simplifying the above, we get:
( 1440× 10^-6) + (2000 ×10^-6) = (7 × 10^-6) × V.
Further simplified as:
3440 × 10^-6 = 7 × 10^-6 × V
Making V the subject
V = 491.43volts
Therefore the potential difference across each capacitor is 491.43v