Answer:
(-infinity, -32/81] U (0, positive infintiy).
( use the sideways 8 symbol for infinity).
Step-by-step explanation:
The range is all possible y values in a function.
We can find the inverse of the function to find the range.

Replace x with y

Write the LCD as two binomial,

Multiply both sides by both binomial











Plug that in to the function to find it range.
We get approximately

So this means a point on our function must include -35/81.
The vertical asymptote is 0 so our y cannot be zero but it goes infinitely up so our range is
(-infinity, -32/81]U (0, positive infintiy).
<em>(</em><em> </em><em>use</em><em> </em><em>the</em><em> </em><em>sideways</em><em> </em><em>8</em><em> </em><em>symbol</em><em> </em><em>for</em><em> </em><em>infinity</em><em>)</em><em>.</em>