Given that f(x) = x^2 – 2x - 63 and g(x) = x + 7, find (f - g)(x)
       
      
                
     
    
    
    
    
    1 answer:
            
              
              
                
                
Answer:
(f - g)(x) = x² - 3x - 70
General Formulas and Concepts:
<u>Pre-Algebra</u>
<u>Algebra I</u>
Step-by-step explanation:
<u>Step 1: Define</u>
f(x) = x² - 2x - 63
g(x) = x + 7
(f - g)(x) is f(x) - g(x)
<u>Step 2: Find (f - g)(x)</u>
- Substitute:                               (f - g)(x) = x² - 2x - 63 - (x + 7)
- Distribute -1:                            (f - g)(x) = x² - 2x - 63 - x - 7
- Combine like terms (x):          (f - g)(x) = x² - 3x - 63 - 7
- Combine like terms (Z):          (f - g)(x) = x² - 3x - 70
 
                                
             
         	    You might be interested in
    
        
        
Answer:4months
Step-by-step explanation:
 
        
             
        
        
        
Answer:
123613575594
Step-by-step explanation:
 
        
                    
             
        
        
        
Answer:
C.because i calculate it d is the correct answer
Step-by-step explanation:
 
        
             
        
        
        
Answer: 160,161,178
Step-by-step explanation: first it adds 17 to the equation then adds 1 repeat this process and you get these answers.
 
        
                    
             
        
        
        
<span> You refer to a multiple of ten. As a multiple of ten you can just add it to another number easier than a "ones number".</span>