Answer:
4) Alternate Interior angles 5) Parallel lines property.
Step-by-step explanation:
The question is asking us to Complete the statements to prove that line AB ⩭ to line CD and line BC ⩭ to line AD.
In statement 4 .∠CAB is congruent to ∠ACD as AB is parallel to CD and ∠BCA is congruent to∠CAD as AD is parallel to BC and these are Alternate interior angles to the parallel lines .
In statement 5.m∠CAB =∠ACD and ∠BCA = ∠CAD as by property of parallel lines Alternate interior angles are equal.
3x^-2 can be written
3/x^2 because x^-2 is = 1/x^2
Answer:
A. (1, -2)
B. the lines intersect at the solution point: (1, -2).
Step-by-step explanation:
A. The equations can be solve by substitution by using the y-expression provided by one of them to substitute for y in the other.
This gives ...
3x -5 = 6x -8
Adding 8-3x to both sides, we get ...
3 = 3x
Dividing both sides by 3 gives ...
1 = x
Substituting this value into the first equation, we can find y:
y = 3(1) -5 = -2
The solution is (x, y) = (1, -2).
__
B. The lines intersect at the solution point, the point that satisfies both equations simultaneously. That point is (1, -2).
Answer:
y=-3x-16
Step-by-step explanation:
y-y1=m(x-x1)
y-(-7)=-3(x-(-3))
y+7=-3(x+3)
y=-3x-9-7
y=-3x-16