A. (3.5, -4)
The solution is where both lines intersect
So, Barry bought 4 packs of snowflakes and each pack contains 20 stickers. Therefore, we do 4 x 20, which is 80, so he has 80 snowflake stickers. Then, he also bought 2 packs of dinosaurs, and each pack of dinosaur stickers has 17 stickers. So, we need to do 2 x 17 which is 34, so he has 34 dinosaurs stickers. In total, Barry has 114 stickers, now we need to remember how many stickers in total he has for later. Let's move on to Amy. Amy bought 3 packs of snowflakes, and because each pack contains 20 stickers, we do 3 x 20 which equals 60. Therefore, Amy has 60 snowflake stickers. Then, Amy bought 3 packs of rose stickers, so because each pack of rose stickers has 25 stickers, we do 3 x 25 which is 75. So, Amy has 135 stickers in total. Now let's add up both of their totals to see if we have 300 stickers. So, if we add 135 and 114 we get 249, we do not have enough stickers. Let's find out how many stickers they still need to buy. Now, we do 300 (Because 300 is the amount we need to have) minus 249 (Because that is the amount we have) which equals 51. So, they need to buy 51 more stickers because that is what they are missing from the total they need. Therefore, the answer is A. 51.
Answer:
18
Step-by-step explanation:
12(3/2)=36/2=18
Answer:
Cos: adjacent / hypotenuse
In a right angled triangle, the cosine of an angle is: The length of the adjacent side divided by the length of the hypotenuse. The abbreviation is cos. cos(θ) = adjacent / hypotenuse. Well Done!
Sin: In mathematics, the sine is a trigonometric function of an angle. The sine of an acute angle is defined in the context of a right triangle: for the specified angle, it is the ratio of the length of the side that is opposite that angle, to the length of the longest side of the triangle.
hope this helps out, if not, i'm sorry
Step-by-step explanation:
Answer:
Therefore the solutions are

Step-by-step explanation:
Given:
.........( 1 )
................( 2 )
To Find:
x = ?
y = ?
Solution:
Substituting ' y ' in Equation 1 we get

Using identity (A+B)²=A²+2AB+B² we get

Now Substitute x =0 in equation 2 we get

Or
Now Substitute x =-4 in equation 2 we get

Therefore the solutions are
