Answer: CoBr3 < K2SO4 < NH4 Cl
Justification:
1) The depression of the freezing point of a solution is a colligative property, which means that it depends on the number of particles of solute dissolved.
2) The formula for the depression of freezing point is:
ΔTf = i * Kf * m
Where i is the van't Hoof factor which accounts for the dissociation of the solute.
Kf is the freezing molal constant and only depends on the solvent
m is the molality (molal concentration).
3) Since, you are assuming equal concentrations and complete dissociation of the given solutes, the solute with more ions in the molecular formula will result in the solution with higher depression of the freezing point (lower freezing point).
4) These are the dissociations of the given solutes:
a) NH4 Cl (s) --> NH4(+)(aq) + Cl(-) (aq) => 1 mol --> 2 moles
b) Co Br3 (s) --> Co(3+) (aq) + 3Br(-)(aq) => 1 mol --> 4 moles
c) K2SO4 (s) --> 2K(+) (aq) + SO4 (2-) (aq) => 1 mol --> 3 moles
5) So, the rank of solutions by their freezing points is:
CoBr3 < K2SO4 < NH4 Cl
Answer:
Metal oxides are compounds composed of metal ions and oxide ions. Nonmetal oxides are compounds composed of nonmetal atoms and oxygen atoms. The main difference between metal oxides and non metal oxides is that metal oxides are basic compounds whereas nonmetal oxides are acidic compounds.
Explanation:
have a great day ahead
tC
Answer:
A. 68°F
B. 293K
Explanation:
The temperature (celsius) = 20.0°C
A. Conversion of the temperature in celsius to fahrenheit.
This is illustrated below:
°F = 9C/5 + 32
C = 20°C
°F = 9C/5 + 32
°F = 9x20/5 + 32
°F = 36 + 32
°F = 68°F
B. Temperature (Kelvin) = temperature (celsius) + 273
Temperature (celsius) = 20°C
Temperature (Kelvin) = 20°C + 273
Temperature (Kelvin) = 293K