Answer: The volume is 33 cubic centimeters.
Step-by-step explanation:
First find the volume of the square pyramid on top of the cube. To find the volume of the square pyramid you use the volume a^2*h/3 a is the side length of the base of the square pyramid and h is the height all divide by 3.
So we can say that the side length of the base of the square pyramid is 3 because it has the same side length base as the cube.
V= 3^2 * 2 /3
V= 9 * 2 /3
V= 18/3
v= 6
So the volume of the square pyramid is 6 so now we need to find the volume of the cube and add them together.
Volume of the a cube uses the formula s^3 where s is the side length.
V= 3^3
v= 3*3*3
v= 27
The volume of the cube is 27.
Add 6 and 27 to find the total volume.
6 +27 = 33
Let one integer be x, the consecutive odd integer is x+2
reciprocals are 1/x and 1/(x+2)
1/x +1/(x+2)=24/143
make the denominators the same:
(x+2)/[x(x+2)] +x/[x(x+2)]=24/143
143(2x+2)=24(x)(x+2)
286x+286=24x²+48x
24x²-238x-286=0
use the quadratic formula: x=22 this doesn't work because 22 is not an odd number.
or x=-2.1666666666 (this is not an integer)
weird.
1. Line l; point P not on l.( Take a line I and mark point P outside it or on the line.So from point P there are infinite number of lines out of which only one line is parallel to line I. Suppose you are taking point P on line I, from that point P also infinite number of lines can be drawn but only one line will be coincident or parallel to line I.
2. Plane R is parallel to plane S; Plane T cuts planes R and S.(Imagine you are sitting inside a room ,consider two walls opposite to each other as two planes R and S and floor on which you are sitting as third plane T ,so R and S are parallel and plane T is cutting them so in this case their lines of intersect .But this is not possible in each and every case, suppose R and S planes are parallel to each other and Plane T cuts them like two faces of a building and third plane T is stairs or suppose it is in slanting position i.e not parallel to R and S so in this case also lines of intersection will be parallel.
3. △ABC with midpoints M and N.( As you know if we take a triangle ABC ,the mid points of sides AB and AC being M and N, so the line joining the mid point of two sides of a triangle is parallel to third side and is half of it.
4.Point B is between points A and C.( Take a line segment AC. Mark any point B anywhere on the line segment AC. Three possibilities arises
(i) AB > BC (ii) AB < BC (iii) AB = BC
Since A, B,C are collinear .So in each case 