The product of the sum of two perfect cubes:
a³ + b³ = (a + b)(a² - ab + b²)
The product of the difference of two perfect cubes:
a³ - b³ = (a - b)(a² + ab + b²)
----------------------------------------------------------------------------------------------------------------
Remember to follow FOIL:
(b^2 + 8)(b^2 - 8)
(b^2)(b^2) = b^4
(b^2)(-8) = -8b^2
(8)(b^2) = 8b^2
(8)(-8) = -64
b^4 - 8b^2 + 8b^2 - 64
Combine like terms:
b^4 (-8b^2 + 8b^2) - 64
b^4 - 64
b^4 - 64 is your answer
hope this helps
Check the picture below.
you can pretty much just count off the grid the units for JK and MI.
now, let's check how long are KI and JM
![\bf \textit{distance between 2 points}\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) K&({{ -4}}\quad ,&{{ 4}})\quad % (c,d) I&({{ -2}}\quad ,&{{ 3}}) \end{array}\qquad % distance value d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2} \\\\\\ KI=\sqrt{[-2-(-4)]^2+[3-4]^2}\implies KI=\sqrt{(-2+4)^2+(3-4)^2} \\\\\\ KI=\sqrt{2^2+(-1)^2}\implies KI=\sqrt{4+1}\implies \boxed{KI=\sqrt{5}}\\\\ -------------------------------](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bdistance%20between%202%20points%7D%5C%5C%20%5Cquad%20%5C%5C%0A%5Cbegin%7Barray%7D%7Blllll%7D%0A%26x_1%26y_1%26x_2%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0AK%26%28%7B%7B%20-4%7D%7D%5Cquad%20%2C%26%7B%7B%204%7D%7D%29%5Cquad%20%0A%25%20%20%28c%2Cd%29%0AI%26%28%7B%7B%20-2%7D%7D%5Cquad%20%2C%26%7B%7B%203%7D%7D%29%0A%5Cend%7Barray%7D%5Cqquad%20%0A%25%20%20distance%20value%0Ad%20%3D%20%5Csqrt%7B%28%7B%7B%20x_2%7D%7D-%7B%7B%20x_1%7D%7D%29%5E2%20%2B%20%28%7B%7B%20y_2%7D%7D-%7B%7B%20y_1%7D%7D%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AKI%3D%5Csqrt%7B%5B-2-%28-4%29%5D%5E2%2B%5B3-4%5D%5E2%7D%5Cimplies%20KI%3D%5Csqrt%7B%28-2%2B4%29%5E2%2B%283-4%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AKI%3D%5Csqrt%7B2%5E2%2B%28-1%29%5E2%7D%5Cimplies%20KI%3D%5Csqrt%7B4%2B1%7D%5Cimplies%20%5Cboxed%7BKI%3D%5Csqrt%7B5%7D%7D%5C%5C%5C%5C%0A-------------------------------)
![\bf \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) J&({{ -7}}\quad ,&{{ 4}})\quad % (c,d) M&({{ -8}}\quad ,&{{ 3}}) \end{array}\qquad % distance value \\\\\\ JM=\sqrt{[-8-(-7)]^2+[3-4]^2}\implies JM=\sqrt{(-8+7)^2+(3-4)^2} \\\\\\ JM=\sqrt{(-1)^2+(-1)^2}\implies \boxed{JM=\sqrt{2}}](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7Blllll%7D%0A%26x_1%26y_1%26x_2%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0AJ%26%28%7B%7B%20-7%7D%7D%5Cquad%20%2C%26%7B%7B%204%7D%7D%29%5Cquad%20%0A%25%20%20%28c%2Cd%29%0AM%26%28%7B%7B%20-8%7D%7D%5Cquad%20%2C%26%7B%7B%203%7D%7D%29%0A%5Cend%7Barray%7D%5Cqquad%20%0A%25%20%20distance%20value%0A%5C%5C%5C%5C%5C%5C%0AJM%3D%5Csqrt%7B%5B-8-%28-7%29%5D%5E2%2B%5B3-4%5D%5E2%7D%5Cimplies%20JM%3D%5Csqrt%7B%28-8%2B7%29%5E2%2B%283-4%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AJM%3D%5Csqrt%7B%28-1%29%5E2%2B%28-1%29%5E2%7D%5Cimplies%20%5Cboxed%7BJM%3D%5Csqrt%7B2%7D%7D)
so, add all sides, and that's the perimeter of the trapezoid.
72x3
..............................
Answer:
the median is 8
Step-by-step explanation:
hope this helps!
2,5,6,7,8,10,11,12,14
Answer:
0.018 is the probability that a randomly selected adult has an IQ greater than 131.5
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = 100
Standard Deviation, σ = 15
We are given that the distribution of IQ score is a bell shaped distribution that is a normal distribution.
Formula:
a) P(IQ greater than 131.5)
P(x > 131.5)
Calculation the value from standard normal z table, we have,

0.018 is the probability that a randomly selected adult has an IQ greater than 131.5